Online privacy: Attacks and defenses

被引:0
|
作者
Herrmann, Dominik [1 ]
机构
[1] Univ Hamburg, Fachbereich Informat, Vogt Kolln Str 30, D-22527 Hamburg, Germany
来源
IT-INFORMATION TECHNOLOGY | 2015年 / 57卷 / 02期
关键词
Privacy enhancing technologies; online tracking; linkability; machine learning; website fingerprinting; Domain Name System;
D O I
10.1515/itit-2015-0001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
I approach privacy issues on the Internet from two ends. On the one hand, I design and evaluate defensive measures, so-called privacy enhancing technologies (PETs), which can be used by individuals to protect themselves against surveillance on the Internet. On the other hand, I study the efficacy of offensive techniques. I am especially interested in passive surveillance techniques that cannot be detected. For instance, I have shown how machine learning techniques can be used to infer the contents of encrypted traffic and how to track users solely based on characteristic behavioral patterns.
引用
收藏
页码:133 / 137
页数:5
相关论文
共 50 条
  • [1] Privacy Attacks and Defenses in Machine Learning: A Survey
    Liu, Wei
    Han, Xun
    He, Meiling
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL III, CENET 2023, 2024, 1127 : 413 - 422
  • [2] Survey on Privacy Attacks and Defenses in Machine Learning
    Liu R.-X.
    Chen H.
    Guo R.-Y.
    Zhao D.
    Liang W.-J.
    Li C.-P.
    [J]. Chen, Hong (chong@ruc.edu.cn), 1600, Chinese Academy of Sciences (31): : 866 - 892
  • [3] Privacy and Robustness in Federated Learning: Attacks and Defenses
    Lyu, Lingjuan
    Yu, Han
    Ma, Xingjun
    Chen, Chen
    Sun, Lichao
    Zhao, Jun
    Yang, Qiang
    Yu, Philip S.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 8726 - 8746
  • [4] Visual privacy attacks and defenses in deep learning: a survey
    Zhang, Guangsheng
    Liu, Bo
    Zhu, Tianqing
    Zhou, Andi
    Zhou, Wanlei
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (06) : 4347 - 4401
  • [5] A survey on blockchain systems: Attacks, defenses, and privacy preservation
    Chen, Yourong
    Chen, Hao
    Zhang, Yang
    Han, Meng
    Siddula, Madhuri
    Cai, Zhipeng
    [J]. HIGH-CONFIDENCE COMPUTING, 2022, 2 (02):
  • [6] Visual privacy attacks and defenses in deep learning: a survey
    Guangsheng Zhang
    Bo Liu
    Tianqing Zhu
    Andi Zhou
    Wanlei Zhou
    [J]. Artificial Intelligence Review, 2022, 55 : 4347 - 4401
  • [7] State-of-the-Art Privacy Attacks and Defenses on Graphs
    Liu Y.-H.
    Chen H.
    Liu Y.-X.
    Zhao D.
    Li C.-P.
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (04): : 702 - 734
  • [8] Defenses to curb Online Password Guessing Attacks
    Kirushnaamoni, R.
    [J]. 2013 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2013, : 317 - 322
  • [9] Online Attacks on Picture Owner Privacy
    Pijani, Bizhan Alipour
    Imine, Abdessamad
    Rusinowitch, Michael
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2020, PT II, 2020, 12392 : 33 - 47
  • [10] Privacy Attacks and Defenses for Digital Twin Migrations in Vehicular Metaverses
    Luo, Xiaofeng
    Wen, Jinbo
    Kang, Jiawen
    Nie, Jiangtian
    Xiong, Zehui
    Zhang, Yang
    Yang, Zhaohui
    Xie, Shengli
    [J]. IEEE NETWORK, 2023, 37 (06): : 82 - 91