A STRUT FINITE ELEMENT FOR EXACT INCOMPRESSIBLE ISOTROPIC HYPERELASTIC ANALYSIS

被引:1
|
作者
Arcaro, Vinicius F. [1 ]
Ferrazzo, Pietro C. [1 ]
机构
[1] Univ Estadual Campinas, Coll Civil Engn, Campinas, SP, Brazil
关键词
Hyperelasticity; Incompressibility; Minimization; Nonlinear; Finite element;
D O I
10.2478/sjce-2018-0001
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This text describes a mathematical model of a strut finite element for isotropic incompressible hyperelastic materials. The invariants of the Right Cauchy-Green deformation tensor are written in terms of nodal displacements. The equilibrium problem is formulated as an unconstrained nonlinear programming problem, where the objective function is the total potential energy of the structure and the nodal displacements are the unknowns. The constraint for incompressibility is satisfied exactly, thereby eliminating the need for a penalty function. The results of the examples calculated by the proposed mathematical model show five significant digits in agreement when compared with commercial finite element analysis software.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Theory and finite element implementation of orthotropic and transversely isotropic incompressible hyperelastic membrane
    Abdessalem, Jarraya
    Kallel, Imen Kammoun
    Fakhreddine, Dammak
    [J]. MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2011, 7 (04) : 424 - 439
  • [2] THE ANALYSIS OF INCOMPRESSIBLE HYPERELASTIC BODIES BY THE FINITE-ELEMENT METHOD
    DUFFETT, G
    REDDY, BD
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1983, 41 (01) : 105 - 120
  • [3] Finite element analysis of compressible transversely isotropic hyperelastic shells
    Alireza Beheshti
    Reza Ansari
    [J]. Acta Mechanica, 2023, 234 : 3061 - 3079
  • [4] Finite element analysis of compressible transversely isotropic hyperelastic shells
    Beheshti, Alireza
    Ansari, Reza
    [J]. ACTA MECHANICA, 2023, 234 (07) : 3061 - 3079
  • [5] HIA: A Hybrid Integral Approach to model incompressible isotropic hyperelastic materials - Part 2: Finite element analysis
    Nguessong-Nkenfack, A.
    Beda, T.
    Feng, Z. -Q.
    Peyraut, F.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 86 : 146 - 157
  • [6] The Extended Finite Element Method for Cracked Incompressible Hyperelastic Structures Analysis
    Zaafouri, Mehrez
    Wali, Mondher
    Abid, Said
    Jamal, Mohammad
    Dammak, Fakhreddine
    [J]. MULTIPHYSICS MODELLING AND SIMULATION FOR SYSTEMS DESIGN AND MONITORING, 2015, 2 : 531 - 540
  • [7] On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials
    Osman Gültekin
    Hüsnü Dal
    Gerhard A. Holzapfel
    [J]. Computational Mechanics, 2019, 63 : 443 - 453
  • [8] On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials
    Gueltekin, Osman
    Dal, Husnu
    Holzapfel, Gerhard A.
    [J]. COMPUTATIONAL MECHANICS, 2019, 63 (03) : 443 - 453
  • [9] Accelerated nonlinear finite element method for analysis of isotropic hyperelastic materials nonlinear deformations
    Pei, Xiaohui
    Du, Jingli
    Chen, Guimin
    [J]. APPLIED MATHEMATICAL MODELLING, 2023, 120 : 513 - 534
  • [10] Dynamic finite element analysis of nonlinear isotropic hyperelastic and viscoelastic materials for thermoforming applications
    Erchiqui, F
    Gakwaya, A
    Rachik, M
    [J]. POLYMER ENGINEERING AND SCIENCE, 2005, 45 (01): : 125 - 134