CHAOTIC BEHAVIOR IN NONLINEAR LATTICES

被引:1
|
作者
YAVAS, O
AKKAS, N
机构
[1] ANKARA UNIV,FAC MED,DEPT ENGN PHYS,ANKARA 06100,TURKEY
[2] MIDDLE EAST TECH UNIV,DEPT ENGN SCI,ANKARA 06531,TURKEY
关键词
D O I
10.1016/0020-7225(94)E0033-F
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Forced vibrations of nonlinear lattices, consisting of one or two particles vibrating one dimensionally, are investigated. Harmonic response, bifurcations and chaotic behaviour are considered. We use the Toda potential, the Morse potential and a third ''combined'' potential as the interaction potentials between the adjacent particles in the models. The third potential is obtained via a parametric combination of the Toda and Morse potentials. External loading is harmonic. The attractors, their phase portraits, the associated Lyapunov exponents and the power spectra are obtained and discussed. For different sets of parameters considered, the lattice shows periodic, quasi-periodic or chaotic character. The effect of the type of the interaction potential on the behaviour of the lattice is studied. Comparative results are presented in the form of attractor grids.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 50 条
  • [1] CHAOTIC BEHAVIOR IN NONLINEAR OSCILLATORS
    IYENGAR, RN
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (4-5): : T46 - T53
  • [2] CHAOTIC BEHAVIOR OF A NONLINEAR OSCILLATOR
    裴钦元
    李骊
    [J]. Applied Mathematics and Mechanics(English Edition), 1993, (05) : 395 - 405
  • [3] CHAOTIC BEHAVIOR IN THE NONLINEAR ELASTIC BEAM
    Zhang Nianmei Yang Guitong (Taiyuan University of Technology
    [J]. Acta Mechanica Solida Sinica, 1998, 11 (02) : 133 - 138
  • [4] Chaotic behavior in the nonlinear elastic beam
    Zhang, NM
    Yang, GT
    [J]. ACTA MECHANICA SOLIDA SINICA, 1998, 11 (02) : 133 - 138
  • [5] Macroscopic model for collective behavior of chaotic coupled map lattices
    Lemaître, A
    Chaté, H
    [J]. EUROPHYSICS LETTERS, 1999, 46 (05): : 565 - 570
  • [6] Collective behavior in coupled chaotic map lattices with random perturbations
    dos Santos, A. M.
    Viana, R. L.
    Lopes, S. R.
    Pinto, S. E. de S.
    Batista, A. M.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (07) : 1655 - 1668
  • [8] No evidence of nonlinear or chaotic behavior of cardiovascular murmurs
    Schmidt, S. E.
    Graebe, M.
    Toft, E.
    Struijk, J. J.
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2011, 6 (02) : 157 - 163
  • [9] Synchronization of chaotic behavior in nonlinear Bloch equations
    Uçar, A
    Lonngren, KE
    Bai, EW
    [J]. PHYSICS LETTERS A, 2003, 314 (1-2) : 96 - 101
  • [10] IS THE NONLINEAR (CHAOTIC) BEHAVIOR OF VASOMOTION COMPATIBLE WITH REGULATION
    SLAAF, DW
    TANGELDER, GJ
    BASSINGTHWAIGHTE, JB
    RENEMAN, RS
    [J]. FASEB JOURNAL, 1992, 6 (05): : A2084 - A2084