CONSISTENT ESTIMATION OF THE ORDER OF HIDDEN MARKOV-CHAINS

被引:0
|
作者
BARAS, JS
FINESSO, L
机构
[1] UNIV MARYLAND,SYST RES CTR,COLL PK,MD 20742
[2] UNIV MARYLAND,DEPT ELECT ENGN,COLL PK,MD 20742
[3] CNR LADSEB,CORSO STATI UNITI 4,I-35020 PADUA,ITALY
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The structural parameters,of many statistical models can be estimated maximizing a penalized version of the likelihood function. We use this idea to construct strongly consistent estimators of the order of Hidden Markov Chain models. The specification of the penalty term requires precise information on the rate of growth of the maximized likelihood ratio. We find an upper bound to the rate using results from Information Theory. We give sufficient conditions on the penalty term to avoid overestimation and underestimation of the order. Examples of penalty terms that generate strongly consistent estimators are also given.
引用
收藏
页码:26 / 39
页数:14
相关论文
共 50 条