OBSERVABILITY OF NONLINEAR SYSTEMS

被引:0
|
作者
Knobloch, H. W. [1 ]
机构
[1] Univ Wurzburg, Math Inst, Lehrstul Math 2, D-97094 Wurzburg, Germany
来源
MATHEMATICA BOHEMICA | 2006年 / 131卷 / 04期
关键词
ordinary differential equations; observability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Observability of a general nonlinear system-given in terms of an ODE x = f(x) and an output map y = c(x)-is defined as in linear system theory (i.e. if f(x) = Ax and c(x) = Cx). In contrast to standard treatment of the subject we present a criterion for observability which is not a generalization of a known linear test. It is obtained by evaluation of "approximate first integrals". This concept is borrowed from nonlinear control theory where it appears under the label "Dissipation Inequality" and serves as a link with Hamilton-Jacobi theory.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 50 条
  • [1] Observability of Nonlinear Systems
    Magnusson, K. G.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1984, 1 (04) : 339 - 358
  • [2] OBSERVABILITY OF NONLINEAR SYSTEMS
    ROITENBERG, YY
    [J]. SIAM JOURNAL ON CONTROL, 1970, 8 (03): : 338 - +
  • [3] OBSERVABILITY OF NONLINEAR SYSTEMS.
    Kumar, K.S.P.
    Griffith, E.W.
    [J]. Problems of control and information theory, 1980, 9 (01): : 57 - 65
  • [4] Observability gramian for nonlinear systems
    Vaidya, Umesh
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5027 - 5032
  • [5] OBSERVABILITY OF NONLINEAR CONTROLLED SYSTEMS
    KOSTYUKO.YM
    [J]. AUTOMATION AND REMOTE CONTROL, 1968, (09) : 1384 - &
  • [6] Observability measures for nonlinear systems
    Zeng, Shen
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4668 - 4673
  • [7] On the Observability of Nonlinear and Switched Systems
    Kang, Wei
    Barbot, Jean-Pierre
    Xu, Liang
    [J]. EMERGENT PROBLEMS IN NONLINEAR SYSTEMS AND CONTROL, 2009, 393 : 199 - +
  • [8] ON THE OBSERVABILITY OF NONLINEAR SYSTEMS.
    Gal'perin, Ye.A.
    [J]. Engineering Cybernetics (English translation of Tekhnicheskaya Kibernetika), 1972, 10 (02): : 338 - 345
  • [9] Local observability of nonlinear systems
    Bartosiewicz, Z.
    [J]. Systems and Control Letters, 1995, 25 (04): : 295 - 298
  • [10] OBSERVABILITY OF NONLINEAR-SYSTEMS
    KOU, SR
    ELLIOTT, DL
    TARN, TJ
    [J]. INFORMATION AND CONTROL, 1973, 22 (01): : 89 - 99