SYMMETRY-BREAKING AND PHASE-TRANSITIONS IN GENERAL STATISTICS

被引:3
|
作者
LEVINE, RY
TOMOZAWA, Y
机构
关键词
D O I
10.1103/PhysRevD.28.1358
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:1358 / 1363
页数:6
相关论文
共 50 条
  • [1] SYMMETRY-BREAKING GUT PHASE-TRANSITIONS WITH IRREVERSIBILITIES
    DIOSI, L
    KESZTHELYI, B
    LUKACS, B
    PAAL, G
    [J]. PHYSICS LETTERS B, 1985, 157 (01) : 23 - 26
  • [2] QUANTUM MEASUREMENTS, PHASE-TRANSITIONS, AND SPONTANEOUS SYMMETRY-BREAKING
    MAYBUROV, SN
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (08) : 1587 - 1593
  • [3] ORDER PARAMETER, SYMMETRY-BREAKING, AND PHASE-TRANSITIONS IN THE DESCRIPTION OF MULTIFRACTAL SETS
    BOHR, T
    JENSEN, MH
    [J]. PHYSICAL REVIEW A, 1987, 36 (10): : 4904 - 4915
  • [5] PHASE-TRANSITIONS WITH THE MIXED-STATE SYMMETRY-BREAKING IN SUPERCONDUCTORS WITH THE ANISOTROPIC PAIRING
    ZHITOMIRSKY, ME
    LUKYANCHUK, IA
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1992, 101 (06): : 1954 - 1971
  • [6] PHASE-TRANSITIONS AND CONTINUOUS SYMMETRY BREAKING
    FROHLICH, J
    SIMON, B
    SPENCER, T
    [J]. PHYSICAL REVIEW LETTERS, 1976, 36 (14) : 804 - 806
  • [7] On the origin of phase transitions in the absence of symmetry-breaking
    Pettini, Giulio
    Gori, Matteo
    Franzosi, Roberto
    Clementi, Cecilia
    Pettini, Marco
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 516 : 376 - 392
  • [8] A solvable model for symmetry-breaking phase transitions
    Kumar, Shatrughna
    Li, Pengfei
    Zeng, Liangwei
    He, Jingsong
    Malomed, Boris A.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] A solvable model for symmetry-breaking phase transitions
    Shatrughna Kumar
    Pengfei Li
    Liangwei Zeng
    Jingsong He
    Boris A. Malomed
    [J]. Scientific Reports, 13
  • [10] Domain formation in noninstantaneous symmetry-breaking phase transitions
    Alfinito, E
    Vitiello, G
    [J]. PHYSICAL REVIEW B, 2002, 65 (05) : 1 - 5