On a Semi Symmetric Metric Connection with a Special Condition on a Riemannian Manifold

被引:0
|
作者
Yilmaz, Hulya Bagdatli [1 ]
Zengin, Fusun Ozen [2 ]
Uysal, S. Aynur [3 ]
机构
[1] Marmara Univ, Fac Sci & Letters, Dept Math, Istanbul, Turkey
[2] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, Istanbul, Turkey
[3] Dogus Univ, Fac Sci & Letters, Dept Math, Istanbul, Turkey
来源
关键词
Semi symmetric metric connection; Generalized quasi -Einstein manifold; Mixed generalized quasi constant curvature manifold; Mixed generalized quasi-Einstein manifold;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we consider a manifold equipped with semi symmetric metric connection whose the torsion tensor satisfies a special condition. We investigate some properties of the Ricci tensor and the curvature tensor of this manifold. We obtain a necessary and sufficient condition for the mixed generalized quasi-constant curvature of this manifold. Finally, we prove that if the manifold mentioned above is conformally flat, then it is a mixed generalized quasi-Einstein manifold and we prove that if the sectional curvature of a Riemannian manifold with a semi symmetric metric connection whose the special torsion tensor is independent from orientation chosen, then this manifold is of a mixed generalized quasi constant curvature.
引用
收藏
页码:152 / 161
页数:10
相关论文
共 50 条
  • [1] A SPECIAL TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION ON A RIEMANNIAN MANIFOLD
    De, Uday Chand
    Han, Yan Ling
    Zhao, Pei Biao
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (02): : 529 - 541
  • [2] ON A TYPE OF SEMI-SYMMETRIC METRIC CONNECTION ON A RIEMANNIAN MANIFOLD
    Chand, De Uday
    Barman, Ajit
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 211 - 218
  • [3] ON A TYPE OF SEMI-SYMMETRIC METRIC CONNECTION ON A RIEMANNIAN MANIFOLD
    CHAKI, MC
    KAR, SK
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1983, 36 (01): : 57 - 60
  • [4] A Note on Semi-Symmetric Metric Connection in Riemannian Manifold
    Chaturvedi, Braj Bhushan
    Pandey, Pankaj
    [J]. THAI JOURNAL OF MATHEMATICS, 2021, 19 (04): : 1199 - 1207
  • [5] HYPERSURFACES OF A RIEMANNIAN MANIFOLD WITH SEMI-SYMMETRIC METRIC CONNECTION
    IMAI, T
    [J]. TENSOR, 1972, 23 (03): : 300 - 306
  • [6] On semi-Riemannian submanifolds of a semi-Riemannian manifold with a semi-symmetric metric connection
    Yuecesan, Ahmet
    [J]. KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2008, 35 (1A): : 53 - 68
  • [7] On sectional curvature of a Riemannian manifold with semi-symmetric metric connection
    Zengin, Fusun Ozen
    Uysal, S. Aynur
    Demirbag, Sezgin Altay
    [J]. ANNALES POLONICI MATHEMATICI, 2011, 101 (02) : 131 - 138
  • [8] ON SEMI-SYMMETRIC METRIC CONNECTION IN SUB-RIEMANNIAN MANIFOLD
    Han, Yanling
    Fu, Fengyun
    Zhao, Peibiao
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2016, 47 (04): : 373 - 384
  • [9] SOME PROPERTIES OF A SEMI-SYMMETRIC METRIC CONNECTION IN A RIEMANNIAN MANIFOLD
    BARUA, B
    RAY, AK
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (07): : 736 - 740
  • [10] Lightlike hypersurfaces of a semi-Riemannian manifold with a semi-symmetric metric connection
    Yasar, Erol
    Coeken, A. Ceylan
    Yuecesan, Ahmet
    [J]. KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2007, 34 (2A): : 11 - 24