BOOTSTRAP CONFIDENCE-INTERVALS FOR THE MINIMUM SUM OF ABSOLUTE ERRORS REGRESSION

被引:3
|
作者
STANGENHAUS, G
NARULA, SC
FERREIRA, P
机构
[1] LINKOPING INST TECHNOL,S-58183 LINKOPING,SWEDEN
[2] VIRGINIA COMMONWEALTH UNIV,RICHMOND,VA 23284
[3] UNIV FED SAO CARLOS,BR-13560 SAO CARLOS,SP,BRAZIL
基金
巴西圣保罗研究基金会;
关键词
INFERENCE PROCEDURES; HYPOTHESIS TESTING; L(1)-NORM; MONTE CARLO; PERCENTILE METHOD;
D O I
10.1080/00949659308811546
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
At present very little is known about inference procedures on the parameters of the minimum sum of absolute errors, MSAE, regression model for small to medium size samples. We propose the use of bootstrap methods for this purpose. The (1 - alpha) confidence intervals on the parameters of the regression model may be constructed by using the bootstrap standard deviation or the bootstrap sampling distribution of the MSAE estimator. We compare and contrast the performance and quality of the intervals obtained by the two methods via a Monte Carlo study.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 50 条