INVARIANT CURVES FOR VARIABLE STEP SIZE INTEGRATORS

被引:15
|
作者
STOFFER, D [1 ]
NIPP, K [1 ]
机构
[1] SWISS FED INST TECHNOL,DEPT MATH,CH-8092 ZURICH,SWITZERLAND
来源
BIT | 1991年 / 31卷 / 01期
关键词
Subject classification: AMS 65L; 34C;
D O I
10.1007/BF01952792
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The behaviour of one-step methods with variable step size applied to x = f(x) is investigated. Usually the step size for the current step depends on one or several previous steps. However, under some natural assumptions it can be shown that the step size asymptotically depends only on the location x. This allows to introduce an x-dependent time transformation taking a variable step size method to a constant step-size method. By means of such a transformation general properties of constant step size methods carry over to variable step size methods. This is used to show that if the differential equation admits a hyperbolic periodic solution the variable step size method admits an invariant closed curve near the orbit of the periodic solution.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 50 条
  • [1] Variable step size commutator free Lie group integrators
    Charles Curry
    Brynjulf Owren
    [J]. Numerical Algorithms, 2019, 82 : 1359 - 1376
  • [2] Variable step size commutator free Lie group integrators
    Curry, Charles
    Owren, Brynjulf
    [J]. NUMERICAL ALGORITHMS, 2019, 82 (04) : 1359 - 1376
  • [3] Variable step implementation of geometric integrators
    Calvo, MP
    Lopez-Marcos, MA
    Sanz-Serna, JM
    [J]. APPLIED NUMERICAL MATHEMATICS, 1998, 28 (01) : 1 - 16
  • [4] Efficient adaptive step size control for exponential integrators
    Deka, Pranab Jyoti
    Einkemmer, Lukas
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 123 : 59 - 74
  • [5] INVARIANT CURVES OF ONE-STEP METHODS
    EIROLA, T
    [J]. BIT, 1988, 28 (01): : 113 - 122
  • [6] VARIABLE STEP-SIZE DOES NOT HARM 2ND-ORDER INTEGRATORS FOR HAMILTONIAN-SYSTEMS
    OKUNBOR, DI
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 47 (02) : 273 - 275
  • [7] Variable time step integrators for long-term orbital integrations
    Lee, MH
    Duncan, MJ
    Levison, HF
    [J]. 12TH KINGSTON MEETING : COMPUTATIONAL ASTROPHYSICS, 1997, 123 : 32 - 37
  • [8] ON INVARIANT CLOSED CURVES FOR ONE-STEP METHODS
    BEYN, WJ
    [J]. NUMERISCHE MATHEMATIK, 1987, 51 (01) : 103 - 122
  • [9] A VARIABLE STEP SIZE LMS ALGORITHM
    KWONG, RH
    JOHNSTON, EW
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (07) : 1633 - 1642
  • [10] Exploring the optimum step size for defocus curves
    Wolffsohn, James S.
    Jinabhai, Amit N.
    Kingsnorth, Alec
    Sheppard, Amy L.
    Naroo, Shehzad A.
    Shah, Sunil
    Buckhurst, Phillip
    Hall, Lee A.
    Young, Graeme
    [J]. JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2013, 39 (06): : 873 - 880