SCORING ORDINAL VARIABLES FOR CONSTRUCTING COMPOSITE INDICATORS

被引:0
|
作者
Manisera, Marica [1 ]
机构
[1] Univ Brescia, Dept Quantitat Methods, Brescia, Italy
来源
STATISTICA | 2007年 / 67卷 / 03期
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In order to provide composite indicators of latent variables, for example of customer satisfaction, it is opportune to identify the structure of the latent variable, in terms of the assignment of items to the subscales defining the latent variable. Adopting the reflective model, the impact of four different methods of scoring ordinal variables on the identification of the true structure of latent variables is investigated. A simulation study composed of 5 steps is conducted: (1) simulation of population data with continuous variables measuring a two-dimensional latent variable with known structure; (2) draw of a number of random samples; (3) discretization of the continuous variables according to different distributional forms; (4) quantification of the ordinal variables obtained in step (3) according to different methods; (5) construction of composite indicators and verification of the correct assignment of variables to subscales by the multiple group method and the factor analysis. Results show that the considered scoring methods have similar performances in assigning items to subscales, and that, when the latent variable is multinormal, the distributional form of the observed ordinal variables is not determinant in suggesting the best scoring method to use.
引用
收藏
页码:309 / 324
页数:16
相关论文
共 50 条
  • [1] The ordinal input for cardinal output approach of non-compensatory composite indicators: the PROMETHEE scoring method
    Greco, Salvatore
    Ishizaka, Alessio
    Tasiou, Menelaos
    Torrisi, Gianpiero
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 288 (01) : 225 - 246
  • [2] CATANOVA for ordinal variables using orthogonal polynomials with different scoring methods
    Sarnacchiaro, Pasquale
    D'Ambra, Antonello
    D'Ambra, Luigi
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (13) : 2490 - 2502
  • [3] CONSTRUCTING INDICATORS OF UNOBSERVABLE VARIABLES FROM PARALLEL MEASUREMENTS
    Carpita, Maurizio
    Manisera, Marica
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2012, 5 (03) : 320 - 326
  • [4] A Functional approach for constructing dynamic Composite Indicators
    Sarra, Annalina
    Nissi, Eugenia
    Evangelista, Adelia
    Di Battista, Tonio
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2024, 33 (01): : 173 - 204
  • [5] A mathematical programming approach to constructing composite indicators
    Zhou, P.
    Ang, B. W.
    Poh, K. L.
    [J]. ECOLOGICAL ECONOMICS, 2007, 62 (02) : 291 - 297
  • [6] A multiplicative optimization model for constructing composite indicators
    Zhou, P.
    Ang, B. W.
    Poh, K. L.
    Fan, L. W.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2007, : 45 - 48
  • [7] Constructing composite indicators with imprecise data: A proposal
    Cherchye, Laurens
    Moesen, Willem
    Rogge, Nicky
    Van Puyenbroeck, Tom
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (09) : 10940 - 10949
  • [8] REVIEW OF SOME STATISTICAL METHODS FOR CONSTRUCTING COMPOSITE INDICATORS
    Jimenez-Fernandez, E.
    Ruiz-Martos, Maria J.
    [J]. ESTUDIOS DE ECONOMIA APLICADA, 2020, 38 (01):
  • [9] CRITIQUE OF ORDINAL VARIABLES
    WILSON, TP
    [J]. SOCIAL FORCES, 1971, 49 (03) : 432 - +
  • [10] Data aggregation in constructing composite indicators: A perspective of information loss
    Zhou, Peng
    Fan, Li-Wei
    Zhou, De-Qun
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (01) : 360 - 365