NON-SELF-ADJOINT, 4TH ORDER, INVERSE EIGENVALUE PROBLEM

被引:0
|
作者
MCLAUGHLIN, JR [1 ]
机构
[1] RENNSSELAER POLYTECH INST,TROY,NY 12101
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
下载
收藏
页码:A377 / A377
页数:1
相关论文
共 50 条
  • [1] ON THE EIGENVALUE PROBLEM FOR A CERTAIN NON-SELF-ADJOINT OPERATOR
    BABARSKY, R
    WOOD, HG
    STUDIES IN APPLIED MATHEMATICS, 1986, 75 (03) : 249 - 264
  • [2] A NON-SELF-ADJOINT GENERAL MATRIX EIGENVALUE PROBLEM
    DELIC, G
    VANRENSBURG, EJJ
    WELKE, G
    JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 69 (02) : 325 - 340
  • [3] Accurate modal perturbation in non-self-adjoint eigenvalue problem
    Liu, XL
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (10): : 715 - 725
  • [4] EIGENVALUE INCLUSION IN NON-SELF-ADJOINT EIGENVALUE PROBLEMS
    KLEIN, PP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T560 - T562
  • [5] An Inverse Spectral Problem for Non-Self-Adjoint Jacobi Matrices
    Pushnitski, Alexander
    Stampach, Frantisek
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (07) : 6106 - 6139
  • [6] Inverse problem for the Schrodinger equation with non-self-adjoint matrix potential
    Avdonin, S. A.
    Mikhaylov, A. S.
    Mikhaylov, V. S.
    Park, J. C.
    INVERSE PROBLEMS, 2021, 37 (03)
  • [7] The multidimensional Gel'fand inverse problem for non-self-adjoint operators
    Kurylev, YV
    Lassas, M
    INVERSE PROBLEMS, 1997, 13 (06) : 1495 - 1501
  • [8] An inverse spectral problem for singular non-self-adjoint differential systems
    Yurko, VA
    SBORNIK MATHEMATICS, 2004, 195 (11-12) : 1823 - 1854
  • [10] A primer on eigenvalue problems of non-self-adjoint operators
    Rakesh Kumar
    Kirankumar R. Hiremath
    Sergio Manzetti
    Analysis and Mathematical Physics, 2024, 14