ELECTROMAGNETIC PERTURBATIONS OF CHARGED KERR GEOMETRY

被引:5
|
作者
CROSSMAN, RG [1 ]
机构
[1] UNIV SYDNEY, DEPT APPL MATH, SYDNEY 2006, NEW S WALES, AUSTRALIA
关键词
D O I
10.1007/BF00398371
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:105 / 109
页数:5
相关论文
共 50 条
  • [1] Coupled gravitational and electromagnetic perturbations in Kerr-Newman geometry: A computer approach
    Cherubini, C
    Ruffini, R
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2000, 115 (7-9): : 699 - 711
  • [2] Electromagnetic effects on charged particles in a near-horizon-extreme-Kerr geometry
    Hou, Yehui
    Zhang, Zhenyu
    Guo, Minyong
    Chen, Bin
    PHYSICAL REVIEW D, 2023, 107 (12)
  • [3] CHARGED-PARTICLE MOTION IN AN ELECTROMAGNETIC-FIELD ON KERR BACKGROUND GEOMETRY
    PRASANNA, AR
    VISHVESHWARA, CV
    PRAMANA, 1978, 11 (04) : 359 - 377
  • [4] ELECTROMAGNETIC AND GRAVITATIONAL PERTURBATIONS OF THE KERR METRIC
    PECHENICK, KR
    KEARNEY, MW
    COHEN, JM
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1981, 64 (02): : 453 - 470
  • [5] Scattering of electromagnetic perturbations by a Kerr black hole
    Moreno, C
    REVISTA MEXICANA DE FISICA, 2003, 49 : 95 - 98
  • [6] Dynamics of electromagnetic waves in Kerr geometry
    Mukhopadhyay, B
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (08) : 2307 - 2318
  • [7] ELECTROMAGNETIC-WAVES IN KERR GEOMETRY
    KALNINS, EG
    MILLER, W
    WILLIAMS, GC
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1986, 408 (1834) : 23 - 30
  • [8] Electromagnetic source for the Kerr-Newman geometry
    Dymnikova, Irina
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2015, 24 (14):
  • [9] Gravitational perturbations of the Kerr geometry: High-accuracy study
    Cook, Gregory B.
    Zalutskiy, Maxim
    PHYSICAL REVIEW D, 2014, 90 (12):
  • [10] EQUATIONS GOVERNING ELECTROMAGNETIC PERTURBATIONS OF KERR BLACK-HOLE
    DETWEILER, S
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1976, 349 (1657) : 217 - 230