STABILITY ANALYSIS OF ELECTROMAGNETIC INTERCHANGE MODES IN TOROIDAL GEOMETRY

被引:1
|
作者
WERNEFALK, H
WEILAND, J
机构
[1] Institute for Electromagnetic Field Theory, EURATOM-NFR Association, Chalmers University of Technology, Goteborg
来源
PHYSICA SCRIPTA | 1995年 / 51卷 / 06期
关键词
D O I
10.1088/0031-8949/51/6/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An investigation is presented of how the stability of collisionless electromagnetic interchange modes depends on epsilon(n) (the ratio of the magnetic drift frequency to the diamagnetic drift frequency), the ion temperature gradient and the electron temperature gradient. A linear two fluid model in toroidal geometry is used. The eigenvalue problem is solved analytically and then the complex frequency is solved numerically from the dispersion relation. Comparison is made with Mercier's criterion, in the magnetohydrodynamic limit. The most important observed effects are: 1. When epsilon(n) increases Mercier's criterion becomes increasingly incorrect. The toroidal system becomes more stable than Mercier's criterion predicts. epsilon(n) is large in regions where we have hat density profiles, L(n) >> L(B) (the characteristic scale length of density and magnetic field inhomogeneities). 2. Finite eta(i) (L(n)/L(Ti)) may cause instability below the critical pressure gradient in the Mercier criterion.
引用
收藏
页码:789 / 794
页数:6
相关论文
共 50 条
  • [1] TOROIDAL FIELD-STABILIZATION OF INTERCHANGE MODES IN FIELD-REVERSED MIRROR GEOMETRY
    NGUYEN, K
    KAMMASH, T
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 978 - 978
  • [2] STABILITY OF IDEAL AND RESISTIVE INTERNAL KINK MODES IN TOROIDAL GEOMETRY
    HASTIE, RJ
    HENDER, TC
    CARRERAS, BA
    CHARLTON, LA
    HOLMES, JA
    [J]. PHYSICS OF FLUIDS, 1987, 30 (06) : 1756 - 1766
  • [3] INTERCHANGE STABILITY FOR TOKAMAKS WITH TOROIDAL FLOW
    HOGAN, JT
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 952 - 953
  • [4] TEARING MODES IN TOROIDAL GEOMETRY
    CONNOR, JW
    COWLEY, SC
    HASTIE, RJ
    HENDER, TC
    HOOD, A
    MARTIN, TJ
    [J]. PHYSICS OF FLUIDS, 1988, 31 (03) : 577 - 590
  • [5] KINK MODES IN TOROIDAL GEOMETRY
    ELDRIDGE, O
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1357 - 1357
  • [6] SATURATED TEARING MODES IN TOROIDAL GEOMETRY
    BATEMAN, G
    MORRIS, RN
    [J]. PHYSICS OF FLUIDS, 1986, 29 (03) : 753 - 761
  • [7] Sheared-flow modes in toroidal geometry
    Lewandowski, JLV
    Lin, Z
    Lee, WW
    Hahm, TS
    [J]. PHYSICS OF PLASMAS, 2000, 7 (02) : 588 - 595
  • [8] COLLISIONAL ELECTROSTATIC DRIFT MODES IN TOROIDAL GEOMETRY
    VENEMA, M
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1986, 28 (08) : 1083 - 1092
  • [9] IDEAL MHD CONVECTIVE MODES IN TOROIDAL GEOMETRY
    FERREIRA, A
    COPPI, B
    RAMOS, JJ
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 1044 - 1044
  • [10] Ideal magnetohydrodynamic theory for localized interchange modes in toroidal anisotropic plasmas
    Shi, Tonghui
    Zheng, L. J.
    Wan, B. N.
    Sun, Y.
    Shen, B.
    Qian, J. P.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (08)