Vector norm inequalities for power series of operators in Hilbert spaces

被引:2
|
作者
Chenung, W. S. [1 ]
Dragomir, S. S. [2 ,3 ]
机构
[1] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Victoria Univ, Sch Engn & Sci, Math, Melbourne, Vic 8001, Australia
[3] Univ Witwatersrand, Sch Computat & Applied Math, ZA-2050 Johannesburg, South Africa
来源
TBILISI MATHEMATICAL JOURNAL | 2014年 / 7卷 / 02期
关键词
Bounded linear operators; Hilbert spaces; Functions of operators; Power series; Hermite-Hadamard type inequalities;
D O I
10.2478/tmj-2014-0013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, vector norm inequalities that provides upper bounds for the Lipschitz quantity parallel to f (T) x - f (V) x parallel to for power series f(z) = Sigma(infinity)(n=0) a(n)z(n), bounded linear operators T,V on the Hilbert space H and vectors x epsilon H are established. Applications in relation to Hermite-Hadamard type inequalities and examples for elementary functions of interest are given as well.
引用
收藏
页码:21 / 34
页数:14
相关论文
共 50 条
  • [1] Norm and Numerical Radius Inequalities for Sums of Power Series of Operators in Hilbert Spaces
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    [J]. AXIOMS, 2024, 13 (03)
  • [2] NUMERICAL RADIUS AND p-SCHATTEN NORM INEQUALITIES FOR POWER SERIES OF OPERATORS IN HILBERT SPACES
    Dragomir, Silvestru Sever
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (02): : 365 - 390
  • [3] Some Inequalities for Power Series of Two Operators in Hilbert Spaces
    Dragomir, Sever Silvestru
    Uchiyama, Mitsuru
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2013, 36 (02) : 483 - 498
  • [4] Some numerical radius inequalities for power series of operators in Hilbert spaces
    Dragomir, Silvestru Sever
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [5] Some numerical radius inequalities for power series of operators in Hilbert spaces
    Silvestru Sever Dragomir
    [J]. Journal of Inequalities and Applications, 2013
  • [6] VECTOR INEQUALITIES FOR POWERS OF SOME OPERATORS IN HILBERT SPACES
    Dragomir, S. S.
    [J]. FILOMAT, 2009, 23 (01) : 69 - 83
  • [7] Hölder-Type Inequalities for Power Series of Operators in Hilbert Spaces
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    [J]. AXIOMS, 2024, 13 (03)
  • [8] SOME INEQUALITIES FOR THE NORM AND THE NUMERICAL RADIUS OF LINEAR OPERATORS IN HILBERT SPACES
    Dragomir, S. S.
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (01): : 1 - 7
  • [9] Some vector inequalities for two operators in Hilbert spaces with applications
    Dragomir, Sever S.
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (01) : 75 - 92
  • [10] On norm inequalities of operators on Hilbert space
    Lin, CS
    Ch, YJ
    [J]. INEQUALITY THEORY AND APPLICATIONS, VOL 2, 2003, : 165 - 173