Shrinkage and absolute penalty estimation in linear regression models

被引:11
|
作者
Ahmed, S. Ejaz [1 ]
Raheem, S. M. Enayetur [2 ]
机构
[1] Brock Univ, Fac Math & Sci, St Catharines, ON, Canada
[2] Univ Wisconsin Green Bay, Nat & Appl Sci, Green Bay, WI 54311 USA
关键词
shrinkage estimation; absolute penalty estimation; LASSO; adaptive LASSO; SCAD;
D O I
10.1002/wics.1232
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In predicting a response variable using multiple linear regression model, several candidate models may be available which are subsets of the full model. Shrinkage estimators borrow information from the full model and provides a hybrid estimate of the regression parameters by shrinking the full model estimates toward the candidate submodel. The process introduces bias in the estimation but reduces the overall prediction error that offsets the bias. In this article, we give an overview of shrinkage estimators and their asymptotic properties. A real data example is given and a Monte Carlo simulation study is carried out to evaluate the performance of shrinkage estimators compared to the absolute penalty estimators such as least absolute shrinkage and selection operator (LASSO), adaptive LASSO and smoothly clipped absolute deviation (SCAD) based on prediction errors criterion in a multiple linear regression setup. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:541 / 553
页数:13
相关论文
共 50 条
  • [1] Absolute penalty and shrinkage estimation in partially linear models
    Raheem, S. M. Enayetur
    Ahmed, S. Ejaz
    Doksum, Kjell A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 874 - 891
  • [2] Shrinkage, pretest and absolute penalty estimators in partially linear models
    Ahmed, S. Ejaz
    Doksum, Kjell A.
    Hossain, S.
    You, Jinhong
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (04) : 435 - 454
  • [3] Positive shrinkage, improved pretest and absolute penalty estimators in partially linear models
    Hossain, S.
    Doksum, Kjell A.
    Ahmed, S. Ejaz
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (10) : 2749 - 2761
  • [4] Shrinkage Estimation of Linear Regression Models with GARCH Errors
    Hossain, S.
    Ghahramani, M.
    [J]. JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2016, 15 (04): : 405 - 423
  • [5] Shrinkage Estimation of Linear Regression Models with GARCH Errors
    S. Hossain
    M. Ghahramani
    [J]. Journal of Statistical Theory and Applications, 2016, 15 (4): : 405 - 423
  • [6] Application of shrinkage estimation in linear regression models with autoregressive errors
    Thomson, T.
    Hossain, S.
    Ghahramani, M.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (16) : 3335 - 3351
  • [7] Shrinkage, pretest, and penalty estimators in generalized linear models
    Hossain, Shakhawat
    Ahmed, S. Ejaz
    Doksum, Kjell A.
    [J]. STATISTICAL METHODOLOGY, 2015, 24 : 52 - 68
  • [8] . IMPROVED PENALTY STRATEGIES in LINEAR REGRESSION MODELS
    Yuzbasi, Bahadir
    Ahmed, S. Ejaz
    Gungor, Mehmet
    [J]. REVSTAT-STATISTICAL JOURNAL, 2017, 15 (02) : 251 - 276
  • [9] Shrinkage estimation for linear regression with ARMA errors
    Wu, Rongning
    Wang, Qin
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 2136 - 2148
  • [10] Shrinkage estimation in general linear models
    An, Lihua
    Nkurunziza, Severien
    Fung, Karen Y.
    Krewski, Daniel
    Luginaah, Isaac
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (07) : 2537 - 2549