VOLTAGE-DEPENDENT BLOCK BY MAGNESIUM OF NEURONAL NICOTINIC ACETYLCHOLINE-RECEPTOR CHANNELS IN RAT PHEOCHROMOCYTOMA CELLS

被引:39
|
作者
IFUNE, CK [1 ]
STEINBACH, JH [1 ]
机构
[1] WASHINGTON UNIV,SCH MED,DIV BIOMED SCI,NEURAL SCI PROGRAM,ST LOUIS,MO 63110
来源
关键词
D O I
10.1113/jphysiol.1991.sp018858
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. The effects of Mg2+ on the single-channel conductance of neuronal nicotinic acetylcholine receptors were examined using receptors expressed by the rat phaeochromocytoma cell line, PC12. PC12 cells express at least three conductance classes of channels that are activated by acetylcholine, the largest conductance class being the most prevalent. This receptor channel is blocked by intracellular and extracellular Mg2+. 2. The effects of Mg2+ are asymmetrical; at a given concentration, internal Mg2+ is more effective at blocking outward currents than external Mg2+ is at blocking inward currents. Receptor channels are blocked at concentrations of Mg2+ that are low compared to the concentration of the main permeant cation, Na+, and the block is voltage dependent. 3. The block by Mg2+ is not complete as Mg2+ can permeate the channel. With 80 mM-extracellular Mg2+ (no extracellular Na+), the channel has an inward slope conductance of 2.9 pS. 4. The block by extracellular Mg2+ can be described by a one site, two barrier model for the channel which includes a negative surface charge on the external surface of the membrane. The parameters of the model place the binding site for Mg2+ at 52% of the membrane field from the outside with an apparent dissociation constant of 14 mM. However, the same parameters cannot describe the block by intracellular Mg2+. The deviations from the model suggest that the receptor channel may have more than one binding site for Mg2+.
引用
收藏
页码:683 / 701
页数:19
相关论文
共 50 条
  • [1] VOLTAGE-DEPENDENT INHIBITION OF THE ACETYLCHOLINE-RECEPTOR - REPLY
    OGDEN, D
    COLQUHOUN, D
    GIBB, NA
    TRENDS IN PHARMACOLOGICAL SCIENCES, 1987, 8 (09) : 335 - 335
  • [2] VOLTAGE-DEPENDENT REGULATORY FUNCTION OF THE ACETYLCHOLINE-RECEPTOR
    TAKEYASU, K
    UDGAONKAR, JB
    SHIONO, S
    HESS, GP
    JOURNAL OF GENERAL PHYSIOLOGY, 1985, 86 (06): : A9 - A9
  • [3] ACETYLCHOLINE-RECEPTOR - A VOLTAGE-DEPENDENT REGULATORY SITE
    TAKEYASU, K
    PASQUALE, E
    UDGAONKAR, J
    DELCOUR, A
    HESS, G
    FEDERATION PROCEEDINGS, 1984, 43 (04) : 1098 - 1098
  • [4] Potent and voltage-dependent block by philanthotoxin-343 of neuronal nicotinic receptor/channels in PC12 cells
    Liu, M
    Nakazawa, K
    Inoue, K
    Ohno, Y
    BRITISH JOURNAL OF PHARMACOLOGY, 1997, 122 (02) : 379 - 385
  • [5] Voltage-dependent modulation of the neuronal nicotinic acetylcholine receptor-channel by cartap
    Nagata, K
    Ikeda, T
    Shono, T
    PESTICIDE SCIENCE, 1999, 55 (04): : 452 - 456
  • [6] VOLTAGE-INDEPENDENT BLOCK OF A NEURONAL NICOTINIC ACETYLCHOLINE-RECEPTOR BY N-METHYL LYCACONITINE
    SATTELLE, DB
    PINNOCK, RD
    LUMMIS, SCR
    JOURNAL OF EXPERIMENTAL BIOLOGY, 1989, 142 : 215 - 224
  • [7] CALCIUM PERMEABILITY OF NEURONAL NICOTINIC ACETYLCHOLINE-RECEPTOR CHANNELS IN PC12 CELLS
    SANDS, SB
    BARISH, ME
    BRAIN RESEARCH, 1991, 560 (1-2) : 38 - 42
  • [8] CHANGES IN THE CONDUCTANCE OF THE NEURONAL NICOTINIC ACETYLCHOLINE-RECEPTOR CHANNEL INDUCED BY MAGNESIUM
    NEUHAUS, R
    CACHELIN, AB
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1990, 241 (1301) : 78 - 84
  • [9] NEURONAL NICOTINIC ACETYLCHOLINE-RECEPTOR CURRENTS IN PHEOCHROMOCYTOMA (PC12) CELLS - DUAL MECHANISMS OF RECTIFICATION
    SANDS, SB
    BARISH, ME
    JOURNAL OF PHYSIOLOGY-LONDON, 1992, 447 : 467 - 487
  • [10] A NEURONAL NICOTINIC ACETYLCHOLINE-RECEPTOR IN CRAYFISH NEURONS
    PFEIFFERLINN, C
    GLANTZ, RM
    NEUROSCIENCE LETTERS, 1990, 120 (02) : 234 - 236