THE WEDDERBURN DECOMPOSABILITY OF SOME COMMUTATIVE BANACH-ALGEBRAS

被引:18
|
作者
BADE, WG [1 ]
DALES, HG [1 ]
机构
[1] UNIV LEEDS,SCH MATH,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
关键词
D O I
10.1016/0022-1236(92)90102-O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the question whether certain non-semisimple, commutative Banach algebras have a Wedderburn decomposition U = B ⊕ rad U, where B is a subalgebra of U. Let A(G) be the Fourier algebra of a locally compact abelian group G, and let E be a closed subset of G. Let J(E) be the smallest closed ideal in A(G) whose hull is E. We prove that, when E is a set of non-synthesis, the quotient algebra A(G) J(E) never has a Wedderburn decomposition even in the purely algebraic sense. This result is extended to cover certain Beurling algebras Ax(Rk) and Ax(Tk). © 1992.
引用
收藏
页码:105 / 121
页数:17
相关论文
共 50 条