DUALITY INVARIANCE + RIEMANNIAN GEOMETRY

被引:8
|
作者
PENNEY, R
机构
关键词
D O I
10.1063/1.1704081
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1431 / &
相关论文
共 50 条
  • [1] On geodesic invariance and curvature in nonholonomic Riemannian geometry
    Barrett, Dennis, I
    Remsing, Claudiu C.
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (1-2): : 197 - 213
  • [2] Connes duality in pseudo-Riemannian geometry
    Parfionov, GN
    Zapatrin, RR
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) : 7122 - 7128
  • [3] SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY
    ATIYAH, MF
    HITCHIN, NJ
    SINGER, IM
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711): : 425 - 461
  • [4] CONFORMAL INVARIANCE AND PHENOMENOLOGY OF PARTICLE CREATION: WEYL GEOMETRY VS. RIEMANNIAN GEOMETRY
    Berezin, V. A.
    Ivanova, I. D.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 216 (03) : 1287 - 1298
  • [5] Conformal invariance and phenomenology of particle creation: Weyl geometry vs. Riemannian geometry
    V. A. Berezin
    I. D. Ivanova
    [J]. Theoretical and Mathematical Physics, 2023, 216 : 1287 - 1298
  • [6] Duality Invariance Implies Poincare Invariance
    Bunster, Claudio
    Henneaux, Marc
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (01)
  • [7] DUALITY FOR RIEMANNIAN FOLIATIONS
    KAMBER, FW
    TONDEUR, P
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 40 : 609 - 618
  • [8] Duality and Riemannian cubics
    Lyle Noakes
    [J]. Advances in Computational Mathematics, 2006, 25 : 195 - 209
  • [9] Duality and Riemannian cubics
    Noakes, Lyle
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (1-3) : 195 - 209
  • [10] LORENTZ INVARIANCE AND DUALITY
    MOEN, IO
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1972, A-10 (04): : 784 - +