FINITE-LARMOR-RADIUS FLUTE-MODE THEORY WITH END LOSS

被引:0
|
作者
KOTELNIKOV, IA
BERK, HL
机构
[1] Budker Institute of Nuclear Physics, 630090, Novosibirsk
[2] Institute for Fusion Studies, The University of Texas at Austin, Austin
关键词
D O I
10.1017/S002237780001758X
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The theory of flute-mode stability is developed for a two-energy-component plasma partially terminated by a conducting limiter. The formalism is developed as a preliminary study of the effect of end loss in open-ended mirror machines, where large-Larmor-radius effects are important.
引用
收藏
页码:309 / 339
页数:31
相关论文
共 49 条
  • [1] INVARIANT OF FINITE-LARMOR-RADIUS THEORY
    BAJAJ, NK
    [J]. NUCLEAR FUSION, 1971, 11 (01) : 63 - &
  • [2] STABILIZATION OF FLUTE MODES BY FINITE-LARMOR-RADIUS AND SURFACE EFFECTS
    CAPONI, MZ
    COHEN, BI
    FREIS, RP
    [J]. PHYSICS OF FLUIDS, 1987, 30 (05) : 1410 - 1415
  • [3] EFFECT OF LIMITER END LOSS IN FINITE LARMOR RADIUS THEORY
    BERK, HL
    KOTELNIKOV, IA
    [J]. PHYSICS LETTERS A, 1993, 181 (04) : 315 - 320
  • [4] FINITE-LARMOR-RADIUS MAGNETOHYDRODYNAMIC EQUATIONS FOR MICROTURBULENCE
    HASEGAWA, A
    WAKATANI, M
    [J]. PHYSICS OF FLUIDS, 1983, 26 (10) : 2770 - 2772
  • [5] FINITE-LARMOR-RADIUS MODIFICATION OF THE MERCIER CRITERION
    CONNOR, JW
    TANG, WM
    ALLEN, L
    [J]. NUCLEAR FUSION, 1984, 24 (08) : 1023 - 1027
  • [6] Magnetohydrodynamic equations for plasmas with finite-Larmor-radius effects
    Pogutse, IO
    Smolyakov, AI
    Hirose, A
    [J]. JOURNAL OF PLASMA PHYSICS, 1998, 60 : 133 - 149
  • [7] Absence of complete finite-Larmor-radius stabilization in extended MHD
    Zhu, P.
    Schnack, D. D.
    Ebrahimi, F.
    Zweibel, E. G.
    Suzuki, M.
    Hegna, C. C.
    Sovinec, C. R.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (08)
  • [8] FINITE-LARMOR-RADIUS EFFECTS ON Z-PINCH STABILITY
    SCHEFFEL, J
    FAGHIHI, M
    [J]. JOURNAL OF PLASMA PHYSICS, 1989, 41 : 427 - 439
  • [9] Finite-Larmor-radius kinetic theory of a magnetized plasma in the macroscopic flow reference frame
    Ramos, J. J.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (08)
  • [10] Nonlinear finite-Larmor-radius drift-kinetic equation
    Wong, HV
    [J]. PHYSICS OF PLASMAS, 2005, 12 (11) : 1 - 19