Modeling Airflow Using Subject-Specific 4DCT-Based Deformable Volumetric Lung Models

被引:13
|
作者
Ilegbusi, Olusegun J. [1 ]
Li, Zhiliang [1 ]
Seyfi, Behnaz [1 ]
Min, Yugang [2 ]
Meeks, Sanford [3 ]
Kupelian, Patrick [2 ]
Santhanam, Anand P. [2 ]
机构
[1] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA
[2] Univ Calif Los Angeles, Dept Radiat Oncol, Los Angeles, CA 90230 USA
[3] MD Anderson Canc Ctr Orlando, Dept Radiat Oncol, Orlando, FL 32806 USA
基金
美国国家科学基金会;
关键词
D O I
10.1155/2012/350853
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Lung radiotherapy is greatly benefitted when the tumor motion caused by breathing can be modeled. The aim of this paper is to present the importance of using anisotropic and subject-specific tissue elasticity for simulating the airflow inside the lungs. A computational-fluid-dynamics (CFD) based approach is presented to simulate airflow inside a subject-specific deformable lung for modeling lung tumor motion and the motion of the surrounding tissues during radiotherapy. A flow-structure interaction technique is employed that simultaneously models airflow and lung deformation. The lung is modeled as a poroelastic medium with subject-specific anisotropic poroelastic properties on a geometry, which was reconstructed from four-dimensional computed tomography (4DCT) scan datasets of humans with lung cancer. The results include the 3D anisotropic lung deformation for known airflow pattern inside the lungs. The effects of anisotropy are also presented on both the spatiotemporal volumetric lung displacement and the regional lung hysteresis.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Developing Subject-Specific Lung Tissue Mechanics Models
    Subramaniam, K.
    Tawhai, M. H.
    Hoffman, E. A.
    Kumar, H.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189
  • [2] 4DCT-based study of lung tumor motion reproducibility
    Michalski, D.
    Sontag, M.
    Li, F.
    Andrade, R.
    Uslene, I.
    Brandner, E.
    Heron, D.
    Yue, N.
    Huq, M.
    MEDICAL PHYSICS, 2006, 33 (06) : 2020 - 2021
  • [3] Using 4DCT-Based Ventilation Imaging to Correlate Lung Dose and Function with Clinical Outcomes
    Vinogradskiy, Y.
    Castillo, R.
    Castillo, E.
    Tucker, S.
    Zhongxing, L.
    Guerrero, T.
    Martel, M.
    MEDICAL PHYSICS, 2012, 39 (06) : 3948 - 3948
  • [4] Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography
    Hasse, K.
    Neylon, J.
    Low, D.
    Santhanam, A.
    MEDICAL PHYSICS, 2016, 43 (06) : 3796 - 3796
  • [5] 4DCT-based study of tumor and lung kinematics during respiratory cycle
    Michalski, D.
    Andrade, R.
    Heron, D.
    Huq, M.
    MEDICAL PHYSICS, 2007, 34 (06) : 2387 - 2388
  • [6] 4DCT-based evaluation of lung tumor motion during the breathing cycle
    Adamczyk, M.
    Konkol, M.
    Matecka-Nowak, M.
    Piotrowski, T.
    NEOPLASMA, 2020, 67 (01) : 193 - 202
  • [7] Improving SAR estimations in MRI using subject-specific models
    Jin, Jin
    Liu, Feng
    Weber, Ewald
    Crozier, Stuart
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (24): : 8153 - 8171
  • [8] Comprehensive Clinical Evaluation of Novel 4DCT-Based Lung Function Imaging Methods
    Golkar, E.
    Neupane, T.
    Castillo, R.
    Castillo, E.
    Vinogradskiy, Y.
    MEDICAL PHYSICS, 2024, 51 (10) : 7979 - 7979
  • [9] Using 4DCT-Based Motion Modeling to Predict Motion and Duty Cycle On Successive Days of Gated Radiotherapy
    Myronakis, M.
    Cai, W.
    Dhou, S.
    Cifter, F.
    Lewis, J.
    MEDICAL PHYSICS, 2015, 42 (06) : 3308 - 3308
  • [10] Improving the Accuracy of 4DCT-Based Ventilation Measurements Using Multiple Phases
    Flakus, M.
    Wuschner, A.
    Wallat, E.
    Shao, W.
    Gerard, S.
    Christensen, G.
    Reinhardt, J.
    Bayouth, J.
    MEDICAL PHYSICS, 2019, 46 (06) : E378 - E378