Power control based on signal-to-interference ratio (SIR) has been proposed as a technique for managing co-channel interference in frequency reuse radio systems. Recently, new autonomous power control methods were introduced to achieve near-optimum performance without difficult centralized control proposed earlier. The achievable performance from preliminary studies appears promising for providing significant increase in spectrum efficiency. However, the implementation of the SIR-based power control algorithms remains challenging. In this paper, implementation of power control that indirectly depends on SIR is discussed. As an example, a simple closed-loop power control algorithm for the portable transmitter is introduced for TDMA portable radio systems. While it may appear specific for the system considered, the underlying principle and parameters required (i.e., error indicator, received power level, and signal quality indicator) are common to the implementation of digital demodulation circuitry. Computer simulations indicate that SIR level is maintained at a level suitable for sustaining desirable performance. Furthermore, when the power-control updating period is short, as in the specific system considered, moderate-rate short-term fading can be tracked and mitigated.