PATH-INTEGRAL APPROACH TO DIFFUSION IN RANDOM-MEDIA

被引:13
|
作者
TAO, R
机构
[1] Department of Physics, Southern Illinois University, Carbondale
来源
PHYSICAL REVIEW A | 1991年 / 43卷 / 10期
关键词
D O I
10.1103/PhysRevA.43.5284
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using the path-integral method, we derive the analytical solution for the following one-dimensional diffusion in random media: partial-P(x,t)/partial-t = D[partial-2P(x,t)/partial-x2] + lambda-V(x)P(x,t), where V is a white-noise Gaussian potential. A quantity tau = (16D/9-lambda-4)1/3 is introduced for the time scale. When the diffusion time t << tau, the behavior of the average < P(x,t) > is essentially diffusive. When t >> tau, the random potential plays a dominant role, and the average < P(x,t) > tends to [lambda-4t5/2/8(pi-D3)1/2]exp[(lambda-4t3/48D)(1 - x2/2Dt)].
引用
收藏
页码:5284 / 5288
页数:5
相关论文
共 50 条
  • [1] WAVE-PROPAGATION THEORIES IN RANDOM-MEDIA BASED ON THE PATH-INTEGRAL APPROACH
    CHARNOTSKII, MI
    GOZANI, J
    TATARSKII, VI
    ZAVOROTNY, VU
    [J]. PROGRESS IN OPTICS, VOL XXXII, 1993, 32 : 205 - 266
  • [2] FUNCTIONAL INTEGRAL APPROACH FOR DIFFUSION IN A RANDOM-MEDIA
    BOTELHO, LCL
    DASILVA, ED
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (10): : 1829 - 1832
  • [3] MOMENT-EQUATION AND PATH-INTEGRAL TECHNIQUES FOR WAVE-PROPAGATION IN RANDOM-MEDIA
    CODONA, JL
    CREAMER, DB
    FLATTE, SM
    FREHLICH, RG
    HENYEY, FS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (01) : 171 - 177
  • [4] Path-integral approach to dynamics in a sparse random network
    Ichinomiya, T
    [J]. PHYSICAL REVIEW E, 2005, 72 (01):
  • [5] DIFFUSION IN A POTENTIAL-FIELD - PATH-INTEGRAL APPROACH
    BAIBUZ, VF
    ZITSERMAN, VY
    DROZDOV, AN
    [J]. PHYSICA A, 1984, 127 (1-2): : 173 - 193
  • [6] PATH-INTEGRAL SOLUTION OF THE TIME-DOMAIN PROGRESSIVE WAVE-EQUATION AND WAVE-PROPAGATION IN RANDOM-MEDIA
    DACOL, DK
    [J]. WAVES IN RANDOM MEDIA, 1994, 4 (02): : 117 - 126
  • [7] SPECTRAL DIFFUSION IN RANDOM-MEDIA - A MASTER EQUATION APPROACH
    RUDENKO, AI
    BASSLER, H
    [J]. CHEMICAL PHYSICS LETTERS, 1991, 182 (06) : 581 - 587
  • [8] Path-integral approach to a polymer chain in random media with long-range disorder correlations
    Kunsombat, C
    Sa-Yakanit, V
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (29): : 4381 - 4387
  • [9] Path-integral approach to the dynamics of a random chain with rigid constraints
    Ferrari, Franco
    Paturej, Jaroslaw
    Vilgis, Thomas A.
    [J]. PHYSICAL REVIEW E, 2008, 77 (02):
  • [10] Effective diffusion of a tracer in active bath: A path-integral approach
    Mengkai Feng
    Zhonghuai Hou
    [J]. NationalScienceOpen., 2024, 3 (04) - 40