A HYPERBOLIC MODEL FOR THE ONE-DIMENSIONAL ELECTROMAGNETIC PULSE

被引:1
|
作者
BAMPI, F [1 ]
ZORDAN, C [1 ]
机构
[1] UNIV GENOA,DIPARTIMENTO INGN BIOFIS ELETTRON,I-16145 GENOA,ITALY
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1990年 / 2卷 / 06期
关键词
D O I
10.1063/1.859262
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An account of the current phenomenology relative to the electromagnetic pulse is obtained by having recourse to the model of a charged fluid. In particular, a differential system is deduced for the description of a one-dimensional electric field generated by the so-called Compton current. The system turns out to be hyperbolic, thus allowing for discontinuity waves. The evolution law for the amplitude of such waves is examined in detail. Mathematical problems resulting from the vanishing of the electric field ahead of the wave front are also investigated. © 1990 American Institute of Physics.
引用
收藏
页码:1233 / 1237
页数:5
相关论文
共 50 条
  • [1] A ONE-DIMENSIONAL MODEL OF A PULSE COMBUSTOR
    BARR, PK
    DWYER, HA
    BRAMLETTE, TT
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 1988, 58 (4-6) : 315 - 336
  • [2] One-dimensional model equations for hyperbolic fluid flow
    Do, Tam
    Vu Hoang
    Radosz, Maria
    Xu, Xiaoqian
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 140 : 1 - 11
  • [3] ONE-DIMENSIONAL ELECTROMAGNETIC INDUCTION PROBLEM - MODEL REFINEMENT
    ANDERSSEN, RS
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1979, 57 (01): : 67 - 77
  • [4] ONE-DIMENSIONAL HYPERBOLIC SETS FOR FLOWS
    BOWEN, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) : 173 - &
  • [5] A hyperbolic rheological model for one-dimensional secondary consolidation of soft soils
    Yu Xiang-juan
    Yin Zong-ze
    Gao Lei
    [J]. ROCK AND SOIL MECHANICS, 2015, 36 (02) : 320 - 324
  • [6] Representation of solutions of second order one-dimensional model hyperbolic equations
    Galstian, Anahit
    Kinoshita, Tamotu
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2016, 130 : 355 - 374
  • [7] Representation of solutions of second order one-dimensional model hyperbolic equations
    Anahit Galstian
    Tamotu Kinoshita
    [J]. Journal d'Analyse Mathématique, 2016, 130 : 355 - 374
  • [8] A kinetic model for the one-dimensional electromagnetic solitons in an isothermal plasma
    Lontano, M
    Bulanov, SV
    Koga, J
    Passoni, M
    Tajima, T
    [J]. PHYSICS OF PLASMAS, 2002, 9 (06) : 2562 - 2568
  • [9] One-Dimensional Model for Cerebrospinal Fluid Pulse in the Spinal Column
    Cirovic, S.
    Kim, M.
    [J]. 6TH WORLD CONGRESS OF BIOMECHANICS (WCB 2010), PTS 1-3, 2010, 31 : 366 - 369
  • [10] RKCVDFEM for one-dimensional hyperbolic conservation laws
    Chen, Dawei
    Yu, Xijun
    [J]. Jisuan Wuli/Chinese Journal of Computational Physics, 2009, 26 (04): : 501 - 509