ANNIHILATING BRANCHING-PROCESSES

被引:18
|
作者
BRAMSON, M
DING, WD
DURRETT, R
机构
[1] CORNELL UNIV, ITHACA, NY 14853 USA
[2] ANHUI NORMAL UNIV, ANHUI, PEOPLES R CHINA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0304-4149(91)90056-I
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Markov processes eta-t-subset-of Z(d) in which (i) particles die at rate sigma greater-than-or-equal-to 0, (ii) births from x to a neighboring y occur at rate 1, and (iii) when a new particle lands on an occupied site the particles annihilate each other and a vacant site results. When sigma = 0 product measure with density 1/2 is a stationary distribution; we show it is the limit whenever P(eta-o not-equal phi) = 1. We also show that if sigma is small there is a nontrivial stationary distribution, and that for any sigma there are most two extremal translation invariant stationary distributions.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条