ON DRAWING A PLANAR GRAPH

被引:2
|
作者
WING, O
机构
来源
IEEE TRANSACTIONS ON CIRCUIT THEORY | 1966年 / CT13卷 / 01期
关键词
D O I
10.1109/TCT.1966.1082522
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:112 / &
相关论文
共 50 条
  • [1] Picking Planar Edges; or, Drawing a Graph with a Planar Subgraph
    Schaefer, Marcus
    [J]. GRAPH DRAWING (GD 2014), 2014, 8871 : 13 - 24
  • [2] A note on isosceles planar graph drawing
    Frati, Fabrizio
    [J]. INFORMATION PROCESSING LETTERS, 2010, 110 (12-13) : 507 - 509
  • [3] Algorithm for drawing undirected planar graph
    Zhang, Qing-Guo
    Huang, Jing-Wei
    [J]. Xiaoxing Weixing Jisuanji Xitong/Mini-Micro Systems, 2003, 24 (06):
  • [4] Construction of a Topological Drawing of the Most Planar Subgraph of the Non-planar Graph
    S. V. Kurapov
    A. V. Tolok
    [J]. Automation and Remote Control, 2018, 79 : 793 - 810
  • [5] EVERY TRIANGLE-FREE PLANAR GRAPH HAS A PLANAR UPWARD DRAWING
    KISIELEWICZ, A
    RIVAL, I
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1993, 10 (01): : 1 - 16
  • [6] Construction of a Topological Drawing of the Most Planar Subgraph of the Non-planar Graph
    Kurapov, S. V.
    Tolok, A. V.
    [J]. AUTOMATION AND REMOTE CONTROL, 2018, 79 (05) : 793 - 810
  • [7] A LINEAR-TIME ALGORITHM FOR DRAWING A PLANAR GRAPH ON A GRID
    CHROBAK, M
    PAYNE, TH
    [J]. INFORMATION PROCESSING LETTERS, 1995, 54 (04) : 241 - 246
  • [8] Metabolic network visualization using constraint planar graph drawing algorithm
    Bourqui, Romain
    Auber, David
    Lacroix, Vincent
    Jourdan, Fabien
    [J]. INFORMATION VISUALIZATION-BOOK, 2006, : 489 - +
  • [9] Balanced Schnyder Woods for Planar Triangulations: An Experimental Study with Applications to Graph Drawing and Graph Separators
    Aleardi, Luca Castelli
    [J]. GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 : 114 - 121
  • [10] Graph Neural Networks for Graph Drawing
    Tiezzi, Matteo
    Ciravegna, Gabriele
    Gori, Marco
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4668 - 4681