ENUMERATION OF THE ORDER-14 INVARIANTS FORMED FROM THE RIEMANN TENSOR

被引:2
|
作者
WYBOURNE, BG
MELLER, J
机构
[1] Instytut Fizyki, Mikoleja Kopernika Univ., Torun
来源
关键词
D O I
10.1088/0305-4470/25/22/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The results of a complete enumeration of the scalars formed from the Riemann tensor by covariant differentiation, multiplication and contraction of order 14 in the derivatives of the metric are presented. The corresponding enumeration for the numbers of scalars constructed solely from the Weyl tensor is also given.
引用
收藏
页码:5999 / 6003
页数:5
相关论文
共 50 条
  • [1] ON FUNCTIONALLY CONSTANT INVARIANTS OF RIEMANN TENSOR
    BUCHDAHL, HA
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 68 : 179 - &
  • [2] Tensor invariants and homogeneous Riemann spaces
    Surmanidze R.M.
    [J]. Journal of Mathematical Sciences, 2013, 195 (2) : 245 - 257
  • [3] Invariants of the Riemann tensor: A classical approach
    Siklos, S. T. C.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (06) : 1083 - 1094
  • [4] Invariants of the Riemann tensor: A classical approach
    S. T. C. Siklos
    [J]. General Relativity and Gravitation, 2006, 38 : 1083 - 1094
  • [5] Second order scalar invariants of the Riemann tensor: Applications to black hole spacetimes
    Cherubini, C
    Bini, D
    Capozziello, S
    Ruffini, R
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2002, 11 (06): : 827 - 841
  • [6] ORTHOGONAL DIAGONAL LATIN SQUARES OF ORDER-14
    ZHU, L
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1984, 36 (FEB): : 1 - 3
  • [7] INVAR: COMPUTER ALGEBRA FOR THE INVARIANTS OF THE RIEMANN TENSOR
    Martin-Garcia, J. M.
    Yllanes, D.
    Portugal, R.
    [J]. SPANISH RELATIVITY MEETING, ERE2007: RELATIVISTIC ASTROPHYSICS AND COSMOLOGY, 2008, 30 : 223 - +
  • [8] The Invar tensor package: Differential invariants of Riemann
    Martin-Garcia, J. M.
    Yllanes, D.
    Portugal, R.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (08) : 586 - 590
  • [9] 3 MUTUALLY ORTHOGONAL LATIN SQUARES OF ORDER-14
    TODOROV, DT
    [J]. ARS COMBINATORIA, 1985, 20 : 45 - 47
  • [10] ON THE ALGEBRAIC INVARIANTS OF THE 4-DIMENSIONAL RIEMANN TENSOR
    SNEDDON, GE
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (05) : 1031 - 1032