LAGRANGIAN VARIATIONAL PRINCIPLE IN STOCHASTIC MECHANICS - GAUGE STRUCTURE AND STABILITY

被引:25
|
作者
LOFFREDO, MI [1 ]
MORATO, LM [1 ]
机构
[1] UNIV PADUA,DIPARTIMENTO FIS G GALILEI,I-35131 PADUA,ITALY
关键词
D O I
10.1063/1.528452
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:354 / 360
页数:7
相关论文
共 50 条
  • [1] GAUSSIAN SOLUTIONS TO THE LAGRANGIAN VARIATIONAL PROBLEM IN STOCHASTIC MECHANICS
    MORATO, LM
    UGOLINI, S
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1994, 60 (03): : 323 - 337
  • [2] Eulerian versus Lagrangian variational principles in stochastic mechanics
    Loffredo, MI
    Ugolini, S
    [J]. MECCANICA, 1996, 31 (02) : 195 - 206
  • [3] Variational principle for stochastic mechanics based on information measures
    Yang, Jianhao M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)
  • [4] Lagrangian Navier-Stokes diffusions on manifolds: Variational principle and stability
    Arnaudon, Marc
    Cruzeiro, Ana Bela
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (08): : 857 - 881
  • [5] VARIATIONAL PRINCIPLE IN QUANTUM MECHANICS
    HUGENHOLTZ, NM
    [J]. PHYSICAL REVIEW, 1954, 96 (04): : 1158 - 1159
  • [6] Variational principle in Hamiltonian mechanics
    L. V. Prokhorov
    A. S. Ushakov
    [J]. Doklady Mathematics, 2008, 78 : 925 - 928
  • [7] Variational principle in Hamiltonian mechanics
    Prokhorov, L. V.
    Ushakov, A. S.
    [J]. DOKLADY MATHEMATICS, 2008, 78 (03) : 925 - 928
  • [8] A variational principle for fluid mechanics
    Ton, TC
    [J]. ARCHIVE OF APPLIED MECHANICS, 1996, 67 (1-2) : 96 - 104
  • [9] INTEGRAL VARIATIONAL PRINCIPLE OF MECHANICS
    AINOLA, LI
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1966, 30 (05): : 1124 - &
  • [10] A New Minimum Principle for Lagrangian Mechanics
    Matthias Liero
    Ulisse Stefanelli
    [J]. Journal of Nonlinear Science, 2013, 23 : 179 - 204