Bivariate Generalization of The Inverted Hypergeometric Function Type I Distribution

被引:0
|
作者
Bran-Cardona, Paula A. [1 ]
Zarrazola, Edwin [2 ]
Nagar, Daya K. [2 ]
机构
[1] Univ Valle, Dept Matemat, Cali, Colombia
[2] Univ Antioquia, Inst Matemat, Calle 67,53-108, Medellin, Colombia
来源
关键词
Appell's first hypergeometric function; Beta distribution; Gauss hypergeometric function; Humbert's confluent hypergeometric function; product; transformation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bivariate inverted hypergeometric function type I distribution is defined by the probability density function proportional to (sic) (1 + x(1) + x(2)) -(sic) F-2(1)(alpha, beta; gamma; (1 + x(1) + x(2))(-1)), x(1) > 0, x(2) > 0, where v(1), v(2), alpha, beta and gamma are suitable constants. In this article, we study several properties of this distribution and derive density functions of X-1/X-2, X-1/(X-1 + X-2) and X-1 + X-2. We also consider several products involving bivariate inverted hypergeometric function type I, beta type I, beta type II, beta type III, Kummer-beta and hypergeometric function type I variables.
引用
收藏
页码:317 / 332
页数:16
相关论文
共 50 条
  • [1] Multivariate Generalization of the Hypergeometric Function Type I Distribution
    Daya K. Nagar
    Paula Andrea Bran-Cardona
    Arjun K. Gupta
    Acta Applicandae Mathematicae, 2009, 105 : 111 - 122
  • [2] Multivariate Generalization of the Hypergeometric Function Type I Distribution
    Nagar, Daya K.
    Andrea Bran-Cardona, Paula
    Gupta, Arjun K.
    ACTA APPLICANDAE MATHEMATICAE, 2009, 105 (01) : 111 - 122
  • [3] PROPERTIES OF THE HYPERGEOMETRIC FUNCTION TYPE I DISTRIBUTION
    Nagar, Daya K.
    Alvarez, Jose Angel
    ADVANCES AND APPLICATIONS IN STATISTICS, 2005, 5 (03) : 341 - 351
  • [4] A Generalization of the Bivariate Gamma Distribution Based on Generalized Hypergeometric Functions
    Caamano-Carrillo, Christian
    Contreras-Reyes, Javier E.
    MATHEMATICS, 2022, 10 (09)
  • [5] A GENERALIZATION OF THE (INVERTED) MATRIC-T TYPE-I DISTRIBUTION
    NEL, DG
    VANDERMERWE, CA
    SOUTH AFRICAN STATISTICAL JOURNAL, 1983, 17 (02) : 188 - 188
  • [6] Distribution of The Product of Independent Hypergeometric Function Type I Variables
    Nagar, Daya K.
    Angel Alvarez, Jose
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2008, 13 (M08): : 46 - 56
  • [7] Distribution of the product of independent hypergeometric function type I variables
    Departamento de Matemáticas, Universidad de Antioquia, Calle 67, No. 53-108, Medellín, Colombia
    不详
    International Journal of Applied Mathematics and Statistics, 2008, 13 (MO8): : 46 - 56
  • [8] PROPERTIES OF THE BIVARIATE CONFLUENT HYPERGEOMETRIC FUNCTION KIND 1 DISTRIBUTION
    Nagar, Daya K.
    Humberto Sepulveda-Murillo, Fabio
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (01): : 11 - 21
  • [9] Bivariate Pareto-Feller Distribution Based on Appell Hypergeometric Function
    Caamano-Carrillo, Christian
    Bevilacqua, Moreno
    Zamudio-Monserratt, Michael
    Contreras-Reyes, Javier E.
    AXIOMS, 2024, 13 (10)
  • [10] A Conway Maxwell Poisson type generalization of the negative hypergeometric distribution
    Roy, Sudip
    Tripathi, Ram C.
    Balakrishnan, Narayanaswamy
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (10) : 2410 - 2428