INFINITELY MANY SOLUTIONS OF A SYMMETRICAL DIRICHLET PROBLEM

被引:186
|
作者
BARTSCH, T
机构
[1] Mathematisches Institut, Universität Heidelberg, 6900 Heidelberg
关键词
NONLINEAR DIRICHLET PROBLEMS; EXISTENCE OF MANY SOLUTIONS; GEOMETRICAL INDEX THEORY;
D O I
10.1016/0362-546X(93)90151-H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1205 / 1216
页数:12
相关论文
共 50 条
  • [1] INFINITELY MANY RADIALLY SYMMETRICAL SOLUTIONS OF A SUPERLINEAR DIRICHLET PROBLEM IN A BALL
    ELHACHIMI, A
    DETHELIN, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (11): : 1171 - 1174
  • [2] INFINITELY MANY RADIALLY SYMMETRICAL-SOLUTIONS TO A SUPERLINEAR DIRICHLET PROBLEM IN A BALL
    CASTRO, A
    KUREPA, A
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (01) : 57 - 64
  • [3] INFINITELY MANY SOLUTIONS FOR THE DIRICHLET PROBLEM ON THE SIERPINSKI GASKET
    Breckner, Brigitte E.
    Radulescu, Vicentiu D.
    Varga, Csaba
    [J]. ANALYSIS AND APPLICATIONS, 2011, 9 (03) : 235 - 248
  • [4] Infinitely many nonradial solutions to a superlinear Dirichlet problem
    Aduén, H
    Castro, A
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) : 835 - 843
  • [5] INFINITELY MANY SOLUTIONS TO THE DIRICHLET PROBLEM FOR QUASILINEAR ELLIPTIC SYSTEMS
    Di Falco, Antonio Giuseppe
    [J]. MATEMATICHE, 2005, 60 (01): : 163 - 179
  • [6] INFINITELY MANY SOLUTIONS FOR A DIRICHLET BOUNDARY VALUE PROBLEM WITH IMPULSIVE CONDITION
    Afrouzi, Ghasem A.
    Hadjian, Armin
    Shokooh, Saeid
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (04): : 9 - 22
  • [7] Infinitely many solutions for a Dirichlet problem involving the p-Laplacian
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 737 - 752
  • [8] Infinitely many solutions for the Dirichlet problem via a variational principle of Ricceri
    Cammaroto, F
    Chinnì, A
    Di Bella, B
    [J]. Variational Analysis and Applications, 2005, 79 : 215 - 229
  • [9] Infinitely many solutions for a dirichlet boundary value problem with impulsive condition
    Afrouzi, Ghasem A.
    Hadjian, Armin
    Shokooh, Saeid
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2015, 77 (04): : 9 - 22
  • [10] ON THE EXISTENCE OF INFINITELY MANY SOLUTIONS OF THE DIRICHLET PROBLEM FOR SEMILINEAR ELLIPTIC EQUATIONS
    邓耀华
    沈尧天
    李树荣
    [J]. Science Bulletin, 1985, (07) : 853 - 857