THE EQUIVARIANT HUREWICZ MAP

被引:20
|
作者
LEWIS, LG
机构
关键词
HUREWICZ MAP; HUREWICZ ISOMORPHISM; WHITEHEAD THEOREM; EQUIVARIANT ORDINARY HOMOLOGY; FREUDENTHAL SUSPENSION THEOREM;
D O I
10.2307/2153946
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact Lie group, Y be a based G-space, and V be a G-representation. If pi(V)G(Y) is the equivariant homotopy of Y in dimension V and H(V)G(Y) is the equivariant ordinary homology group of Y with Burnside ring coefficients in dimension V, then there is an equivariant Hurewicz map h: pi(V)G(Y) --> H(V)G(Y). One should not expect this map to be an isomorphism, since H(V)G(Y) must be a module over the Burnside ring, but pi(V)G(Y) need not be. However, here it is shown that, under the obvious connectivity conditions on Y, this map induces an isomorphism between H(V)G(Y) and an algebraically defined modification of pi(V)G(Y). The equivariant Freudenthal Suspension Theorem contains a technical hypothesis that has no nonequivariant analog. Our results shed some light on the behavior of the suspension map when this rather undesirable technical hypothesis is not satisfied.
引用
收藏
页码:433 / 472
页数:40
相关论文
共 50 条
  • [1] The Hurewicz map in motivic homotopy theory
    Choudhury, Utsav
    Hogadi, Amit
    [J]. ANNALS OF K-THEORY, 2022, 7 (01) : 179 - 190
  • [2] WHITEHEAD PRODUCTS, DIMENSION AND HUREWICZ MAP
    HARPER, JR
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1973, 45 (02): : 189 - 191
  • [3] THE HUREWICZ MAP ON STUNTED COMPLEX PROJECTIVE SPACES
    CRABB, MC
    KNAPP, K
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (05) : 783 - 809
  • [4] Motivic spheres and the image of the Suslin–Hurewicz map
    Aravind Asok
    Jean Fasel
    Ben Williams
    [J]. Inventiones mathematicae, 2020, 219 : 39 - 73
  • [5] ON THE DEGREE OF AN EQUIVARIANT MAP
    GUSEIN-ZADE, SM
    [J]. LECTURE NOTES IN MATHEMATICS, 1991, 1462 : 185 - 193
  • [6] Equivariant map superalgebras
    Alistair Savage
    [J]. Mathematische Zeitschrift, 2014, 277 : 373 - 399
  • [7] Equivariant map superalgebras
    Savage, Alistair
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (1-2) : 373 - 399
  • [8] Endomorphisms of the projective plane and the image of the Suslin–Hurewicz map
    Oliver Röndigs
    [J]. Inventiones mathematicae, 2023, 232 : 1161 - 1194
  • [9] Motivic spheres and the image of the Suslin-Hurewicz map
    Asok, Aravind
    Fasel, Jean
    Williams, Ben
    [J]. INVENTIONES MATHEMATICAE, 2020, 219 (01) : 39 - 73
  • [10] Projectively Equivariant Quantization Map
    Sofiane Bouarroudj
    [J]. Letters in Mathematical Physics, 2000, 51 : 265 - 274