A Tableau Method for Checking Rule Admissibility in S4

被引:8
|
作者
Babenyshev, Sergey [1 ]
Rybakov, Vladimir [1 ]
Schmidt, Renate A. [2 ]
Tishkovsky, Dmitry [2 ]
机构
[1] Manchester Metropolitan Univ, Dept Comp & Math, Manchester, Lancs, England
[2] Univ Manchester, Sch Comp Sci, Manchester, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Tableau calculus; admissible rule; modal logic; S4; tableau synthesis framework;
D O I
10.1016/j.entcs.2010.04.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Rules that are admissible can be used in any derivations in any axiomatic system of a logic. In this paper we introduce a method for checking the admissibility of rules in the modal logic S4. Our method is based on a standard semantic ground tableau approach. In particular, we reduce rule admissibility in S4 to satisfiability of a formula in a logic that extends S4. The extended logic is characterised by a class of models that satisfy a variant of the co-cover property. The class of models can be formalised by a well-defined firstorder specification. Using a recently introduced framework for synthesising tableau decision procedures this can be turned into a sound, complete and terminating tableau calculus for the extended logic, and gives a tableau-based method for determining the admissibility of rules.
引用
收藏
页码:17 / 32
页数:16
相关论文
共 50 条
  • [1] A CORRECTION TO THE TABLEAU PROCEDURE FOR S4
    TAPSCOTT, BL
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (01) : 323 - 323
  • [2] SEMANTIC ADMISSIBILITY CRITERIA FOR DEDUCTION RULES IN S4 AND INT
    RYBAKOV, VV
    [J]. MATHEMATICAL NOTES, 1991, 50 (1-2) : 714 - 718
  • [3] Using a Tableau Method for Checking the Database Logical Structure Correctness
    Svetlov, Gennady V.
    Grinchenko, Natalya N.
    Baranchikov, Aleksey I.
    Fokina, Nataliy S.
    Kostrov, Boris V.
    [J]. PROCEEDINGS OF 2018 IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS 2018), 2018,
  • [4] Towards an efficient tableau method for Boolean circuit satisfiability checking
    Junttila, TA
    Niemelä, I
    [J]. COMPUTATIONAL LOGIC - CL 2000, 2000, 1861 : 553 - 567
  • [5] S4正式到来:详解S4季前赛补丁
    皮杰飞飞
    [J]. 电子竞技, 2013, (23) : 72 - 79
  • [6] ADMISSIBILITY OF ACKERMANN'S RULE delta IN RELEVANT LOGICS
    Robles, Gemma
    [J]. LOGIC AND LOGICAL PHILOSOPHY, 2013, 22 (04) : 411 - 427
  • [7] Splittings of S4
    Lickorish, WBR
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2004, 10 : 305 - 312
  • [8] Strange quark mass from pseudoscalar sum rule with O(αs4) accuracy
    Chetyrkin, K. G.
    Khodjamirian, A.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2006, 46 (03): : 721 - 728
  • [9] The Incompleteness of S4 ⊕ S4 for the Product Space R x R
    Kremer, Philip
    [J]. STUDIA LOGICA, 2015, 103 (01) : 219 - 226
  • [10] Refutations and proofs in S4
    Skura, T
    [J]. PROOF THEORY OF MODAL LOGIC, 1996, 2 : 45 - 51