IMPROVEMENT OF SOME MULTIDIMENSIONAL ESTIMATES BY REDUCTION OF DIMENSIONALITY

被引:6
|
作者
FERRE, L
机构
[1] Universale Paul Sabatier, Toulouse
关键词
MULTIDIMENSIONAL ESTIMATES; MEAN SQUARE ERROR; PERTURBATION THEORY; PROJECTION; ASYMPTOTIC EXPANSIONS; PRINCIPAL COMPONENT ANALYSIS;
D O I
10.1006/jmva.1995.1049
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider in this paper a set of k p-variates from which k unbiased estimates of a multidimensional parameter are obtained. Our goal is to propose an improvement of those estimates based on projections onto lower dimensional spaces. The quality of estimation is measured by the mean square error (MSE) of estimation. Asymptotic expansion of these MSEs are given and estimates of these MSEs are proposed for practical use. Finally, several examples of applications are given. (C) 1995 Academic Press, Inc.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 50 条
  • [1] Locally multidimensional scaling for nonlinear dimensionality reduction
    Yang, Li
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGS, 2006, : 202 - +
  • [2] Parametric Space Dimensionality Reduction in Multidimensional Signal Interpolation
    M. V. Gashnikov
    Optical Memory and Neural Networks, 2019, 28 : 95 - 100
  • [3] Dimensionality reduction of multidimensional temporal data through regression
    Rangarajan, L
    Nagabhushan, P
    PATTERN RECOGNITION LETTERS, 2004, 25 (08) : 899 - 910
  • [4] Scatterplot selection for dimensionality reduction in multidimensional data visualization
    Okada, Kaya
    Itoh, Takayuki
    JOURNAL OF VISUALIZATION, 2025, 28 (01) : 205 - 221
  • [5] Parametric Space Dimensionality Reduction in Multidimensional Signal Interpolation
    Gashnikov, M., V
    OPTICAL MEMORY AND NEURAL NETWORKS, 2019, 28 (02) : 95 - 100
  • [6] Some aspects of nonlinear dimensionality reduction
    Wang, Liwen
    Wang, Yongda
    Xiong, Shifeng
    Yang, Jiankui
    COMPUTATIONAL STATISTICS, 2025, 40 (02) : 883 - 906
  • [7] Performance improvement in ATR from dimensionality reduction
    Schmid, NA
    O'Sullivan, JA
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 320 - 320
  • [8] Geometric multidimensional scaling: A new approach for data dimensionality reduction
    Dzemyda, Gintautas
    Sabaliauskas, Martynas
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 409
  • [9] Dimensionality Reduction of Data on Patients with Diabetes Mellitus by Multidimensional Scaling
    Meniailov, Ievgen
    Krivtsov, Serhii
    Chumachenko, Tetyana
    5TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE, IDDM 2022, 2022, 3302
  • [10] An Incremental Dimensionality Reduction Method for Visualizing Streaming Multidimensional Data
    Fujiwara, Takanori
    Chou, Jia-Kai
    Shilpika
    Xu, Panpan
    Ren, Liu
    Ma, Kwan-Liu
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 418 - 428