PROPAGATING WAVES IN DISCRETE BISTABLE REACTION-DIFFUSION SYSTEMS

被引:239
|
作者
ERNEUX, T [1 ]
NICOLIS, G [1 ]
机构
[1] UNIV LIBRE BRUXELLES, FAC SCI, B-1050 BRUSSELS, BELGIUM
关键词
D O I
10.1016/0167-2789(93)90208-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a discrete bistable reaction-diffusion system modeled by N coupled Nagumo equations. We develop an asymptotic method to describe the phenomenon of propagation failure. The Nagumo model depends on two parameters: the coupling constant d and the bistability parameter a. We investigate the limit a --> 0 and d(a) --> 0 and construct traveling front solutions. We obtain the critical coupling constant d = d*(a) above which propagation is possible and determine the propagation speed c = c(d) if d > d*. We investigate two different cases for the initiation of a propagating front solution. Case 1 considers a uniform steady state distribution. A propagating front appears as the result of a fixed boundary condition. Case 2 also considers a uniform steady state distribution but a propagating front appears as the result of a localized perturbation.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 50 条
  • [1] STABLY PROPAGATING PERIODIC-WAVES IN INTRINSICALLY BISTABLE REACTION-DIFFUSION SYSTEMS
    KOGA, S
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1993, 90 (06): : 1361 - 1366
  • [2] Computation of traveling waves for spatially discrete bistable reaction-diffusion equations
    Elmer, CE
    VanVleck, ES
    [J]. APPLIED NUMERICAL MATHEMATICS, 1996, 20 (1-2) : 157 - 169
  • [3] Instability of planar traveling waves in bistable reaction-diffusion systems
    Taniguchi, M
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2003, 3 (01): : 21 - 44
  • [4] Traveling Waves and Pattern Formation for Spatially Discrete Bistable Reaction-Diffusion Equations
    Hupkes, Hermen Jan
    Morelli, Leonardo
    Schouten-Straatman, Willem M.
    Van Vleck, Erik S.
    [J]. DIFFERENCE EQUATIONS AND DISCRETE DYNAMICAL SYSTEMS WITH APPLICATIONS, ICDEA 2018, 2020, 312 : 55 - 112
  • [5] Propagating fronts in reaction-diffusion systems
    Vives, D
    Armero, J
    Marti, A
    Ramirez-Piscina, L
    Casademunt, J
    Sancho, JM
    Sagues, F
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 1998, 23 (1-2) : 239 - 260
  • [6] Stationary structures in a discrete bistable reaction-diffusion system
    Munuzuri, AP
    Chua, LO
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12): : 2807 - 2825
  • [7] Existence of Waves for a Bistable Reaction-Diffusion System with Delay
    Volpert, V.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (02) : 615 - 629
  • [8] Pulses and waves for a bistable nonlocal reaction-diffusion equation
    Volpert, V.
    [J]. APPLIED MATHEMATICS LETTERS, 2015, 44 : 21 - 25
  • [9] TRAVELING WAVES FOR A BISTABLE REACTION-DIFFUSION EQUATION WITH DELAY
    Trofimchuk, Sergei
    Volpert, Vitaly
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 1175 - 1199
  • [10] Wavefronts in bistable hyperbolic reaction-diffusion systems
    Mendez, V
    Compte, A
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 260 (1-2) : 90 - 98