ESTIMATION OF PARAMETERS OF AN EXPONENTIAL-DISTRIBUTION WHEN THE PARAMETER SPACE IS RESTRICTED WITH AN APPLICATION TO 2-SAMPLE PROBLEM

被引:7
|
作者
SINGH, H
GUPTA, RD
MISRA, N
机构
[1] PANJAB UNIV,DEPT STAT,CHANDIGARH 160014,INDIA
[2] UNIV NEW BRUNSWICK,DIV MATH ENGN & COMP SCI,ST JOHN E2L 4L5,NB,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
MEAN SQUARE ERROR; BEST AFFINE ESTIMATORS; MAXIMUM LIKELIHOOD ESTIMATOR; PITMAN NEARNESS; ESTIMATION UNDER ORDER RESTRICTION;
D O I
10.1080/03610929308831031
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of estimating location and scale parameters of an exponential distribution is considered when location parameter in bounded above by a known constant. We propose estimators which are better than the standard estimators in unrestricted case with respect to the mean square error criterion. These estimators are also compared with respect to Pitman Nearness criterion and some interesting and paradoxical results are observed. The theory developed is applied to the problem of estimating the location and scale parameters of two exponential distributions when location parameters are ordered.
引用
收藏
页码:461 / 477
页数:17
相关论文
共 50 条