TOWARDS A PRACTICABLE BAYESIAN NONPARAMETRIC DENSITY ESTIMATOR

被引:0
|
作者
LENK, PJ
机构
关键词
HIERARCHICAL BAYES; LOGISTIC NORMAL PROCESS; SMOOTHING;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonparametric density estimators smooth the empirical distribution function and are sensitive to the choice of smoothing parameters. This paper develops an hierarchical Bayes formulation for the smoothing problem. The prior distribution for the density function is the logistic normal process, which is a logistic transform of a Gaussian process. The covariance of the Gaussian process is a smoothing kernel and has parameters that control the degree of smoothness. The likelihood function for the smoothing parameters and their posterior density are computed from an approximation of the joint moments of the logistic normal process. The marginal predictive density mixes the conditional predictive density given the smoothing parameters with their posterior distribution. This hierarchial Bayes analysis provides a fully automated, data-dependent method for smoothing and selects the amount of smoothing that is coherent with its prior specification.
引用
收藏
页码:531 / 543
页数:13
相关论文
共 50 条
  • [1] A Nonparametric Bayesian Estimator of Copula Density with Applications to Financial Market
    Wang, Qiaoyu
    Wu, Ximing
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2025,
  • [2] A Bayesian nonparametric estimator of a multivariate survival function
    Bulla, P.
    Muliere, P.
    Walker, S.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (10) : 3639 - 3648
  • [3] Asymptotics for a Bayesian nonparametric estimator of species variety
    Favaro, Stefano
    Lijoi, Antonio
    Pruenster, Igor
    BERNOULLI, 2012, 18 (04) : 1267 - 1283
  • [4] A new Bayesian wavelet thresholding estimator of nonparametric regression
    Afshari, M.
    Lak, F.
    Gholizadeh, B.
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (04) : 649 - 666
  • [5] A kernel type nonparametric density estimator for decompounding
    Van Es, Bert
    Gugushvili, Shota
    Spreij, Peter
    BERNOULLI, 2007, 13 (03) : 672 - 694
  • [6] A CONSISTENT NONPARAMETRIC DENSITY ESTIMATOR FOR THE DECONVOLUTION PROBLEM
    LIU, MC
    TAYLOR, RL
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (04): : 427 - 438
  • [7] Adaptive wavelet estimator for nonparametric density deconvolution
    Pensky, M
    Vidakovic, B
    ANNALS OF STATISTICS, 1999, 27 (06): : 2033 - 2053
  • [8] Nonparametric Density Estimation Using Copula Transform, Bayesian Sequential Partitioning, and Diffusion-Based Kernel Estimator
    Majdara, Aref
    Nooshabadi, Saeid
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (04) : 821 - 826
  • [9] ON A STRONGLY CONSISTENT NONPARAMETRIC DENSITY ESTIMATOR FOR THE DECONVOLUTION PROBLEM
    TAYLOR, RL
    ZHANG, HM
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (09) : 3325 - 3342
  • [10] Analysis of Nonparametric Kernel Density Estimator in OFDM Systems
    Vega-Lozada, Victor A.
    Lambertt Lobaina, Angel
    IMCIC 2010: INTERNATIONAL MULTI-CONFERENCE ON COMPLEXITY, INFORMATICS AND CYBERNETICS, VOL I (POST-CONFERENCE EDITION), 2010, : 53 - 56