Inference on P(X < Y) for Exponentiated Family of Distributions

被引:0
|
作者
Sudhansu, S. Maiti [1 ]
Murmu, Sudhir [1 ]
机构
[1] Visva Bharati Univ, Dept Stat, Santini Ketan, W Bengal, India
关键词
Bayes Estimator; Confidence Interval; Credible Interval; Delta Method; Markov Chain Monte Carlo; Maximum Likelihood Estimator; Uniformly Minimum Variance Unbiased Estimator;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inference on R = P(X < Y) has been considered when X and Y belong to independent exponentiated family of distributions. Maximum Likelihood Estimator (MLE), Uniformly Minimum Variance Unbiased Estimator (UMVUE) and Bayes Estimator of R has been derived and compared through simulation study. Exact and approximate confidence intervals and Bayesian credible intervals have also been derived.
引用
收藏
页码:109 / 138
页数:30
相关论文
共 50 条
  • [1] Statistical Inference for a General Family of Modified Exponentiated Distributions
    Gomez-Deniz, Emilio
    Iriarte, Yuri A.
    Gomez, Yolanda M.
    Barranco-Chamorro, Inmaculada
    Gomez, Hector W.
    [J]. MATHEMATICS, 2021, 9 (23)
  • [2] Inference for P(Y<X) for Exponential and Related Distributions
    Ng, Vee Ming
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2006, 5 (02) : 323 - 327
  • [3] Bayesian Inference on the Shape Parameter and Future Observation of Exponentiated Family of Distributions
    Dey, Sanku
    Maiti, Sudhansu S.
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2011, 2011
  • [4] ESTIMATION OF P(X > Y) FOR THE POSITIVE EXPONENTIAL FAMILY OF DISTRIBUTIONS
    Chaturvedi, Ajit
    Malhotra, Ananya
    [J]. STATISTICA, 2018, 78 (02): : 149 - 167
  • [5] Inference of δ = P(X &lt; Y) for Burr XII distributions with record samples
    Chiang, Jyun-You
    Jiang, Nan
    Tsai, Tzong-Ru
    Lio, Y. L.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (03) : 822 - 838
  • [6] Bayesian Inference for P (X &lt; Y) Using Asymmetric Dependent Distributions
    Rubio, Francisco J.
    Steel, Mark F. J.
    [J]. BAYESIAN ANALYSIS, 2013, 8 (01): : 43 - 62
  • [7] A Generalized Family of Exponentiated Composite Distributions
    Liu, Bowen
    Ananda, Malwane M. A.
    [J]. MATHEMATICS, 2022, 10 (11)
  • [8] The exponentiated G geometric family of distributions
    Nadarajah, Saralees
    Cordeiro, Gauss M.
    Ortega, Edwin M. M.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (08) : 1634 - 1650
  • [9] Reliability inference for a family of inverted exponentiated distributions under block progressive Type II censoring
    Kumari, Rani
    Tripathi, Yogesh Mani
    Wang, Liang
    Sinha, Rajesh Kumar
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2024,
  • [10] Estimating the Reliability Function for a Family of Exponentiated Distributions
    Chaturvedi, Ajit
    Pathak, Anupam
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2014, 2014