FLOCK CONJECTURE IN FINITE EGGLIKE INVERSIVE PLANES

被引:0
|
作者
ORR, WF [1 ]
机构
[1] NO MICHIGAN UNIV,MARQUETTE,MI 49855
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A201 / A201
页数:1
相关论文
共 50 条
  • [1] A note on the Dembowksi-Prohaska conjecture for finite inversive planes
    Steinke, Gunter F.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 79 : 527 - 541
  • [2] ON FINITE INVERSIVE PLANES
    DEMBOWSKI, P
    HUGHES, DR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1965, 40 (157P): : 171 - +
  • [3] Finite Minkowski planes and embedded inversive planes
    Rinaldi G.
    Journal of Geometry, 2001, 70 (1) : 160 - 163
  • [4] A CHARACTERIZATION OF SOME FINITE INVERSIVE PLANES
    KEY, JD
    ROSTOM, NKA
    ARS COMBINATORIA, 1989, 27 : 193 - 196
  • [5] DISJOINT CIRCLES IN FINITE MIQUELIAN INVERSIVE PLANES
    EBERT, GL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A200 - A200
  • [7] Set of involutions arising from an egglike inversive plane
    Bonoli G.
    Freni S.
    Journal of Geometry, 2004, 79 (1-2) : 46 - 55
  • [8] A classification of finite {0, 1, 2}-inversive planes
    Durante, Nicola
    Hubsch, Ursula
    Napolitano, Vito
    Ueberberg, Johannes
    Discrete Mathematics, 1999, 208-209 : 211 - 233
  • [9] A classification of finite {0,1,2}-inversive planes
    Durante, N
    Hübsch, U
    Napolitano, V
    Ueberberg, J
    DISCRETE MATHEMATICS, 1999, 208 : 211 - 233
  • [10] Unitals and inversive planes
    Barwick S.G.
    O'Keefe C.M.
    Journal of Geometry, 1997, 58 (1-2) : 43 - 52