Symmetries in Modal Logics

被引:1
|
作者
Areces, Carlos [1 ,2 ]
Hoffmann, Guillaume [1 ]
Orbe, Ezequiel [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
关键词
D O I
10.4204/EPTCS.113.6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We generalize the notion of symmetries of propositional formulas in conjunctive normal form to modal formulas. Our framework uses the coinductive models introduced in [4] and, hence, the results apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows that the symmetries of a modal formula preserve entailment: if sigma is a symmetry of theta then theta proves psi if and only if theta satisfies sigma (s psi).
引用
收藏
页码:27 / 44
页数:18
相关论文
共 50 条
  • [1] SYMMETRIES IN MODAL LOGICS
    Areces, Carlos
    Orbe, Ezequiel
    BULLETIN OF SYMBOLIC LOGIC, 2015, 21 (04) : 373 - 401
  • [2] SYMMETRIES IN QUANTUM LOGICS
    PULMANNOVA, S
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1977, 16 (09) : 681 - 688
  • [3] Modal Intuitionistic Logics as Dialgebraic Logics
    de Groot, Jim
    Pattinson, Dirk
    PROCEEDINGS OF THE 35TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2020), 2020, : 355 - 369
  • [4] Modal logics, justification logics, and realization
    Fitting, Melvin
    ANNALS OF PURE AND APPLIED LOGIC, 2016, 167 (08) : 615 - 648
  • [5] On the incompleteness of modal logics of space: Advancing complete modal logics of place
    Lemon, O
    Pratt, I
    ADVANCES IN MODAL LOGIC, VOL 1, 1998, (87): : 115 - 132
  • [6] Paraconsistent Modal Logics
    Rivieccio, Umberto
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2011, 278 : 173 - 186
  • [7] Duality for modal μ-logics
    Hartonas, C
    THEORETICAL COMPUTER SCIENCE, 1998, 202 (1-2) : 193 - 222
  • [8] Modal Logics are Coalgebraic
    Cirstea, Corina
    Kurz, Alexander
    Pattinson, Dirk
    Schroeder, Lutz
    Venema, Yde
    COMPUTER JOURNAL, 2011, 54 (01): : 31 - 41
  • [9] Fuzzy modal logics
    Mironov A.M.
    Journal of Mathematical Sciences, 2005, 128 (6) : 3461 - 3483
  • [10] Connected modal logics
    Guram Bezhanishvili
    David Gabelaia
    Archive for Mathematical Logic, 2011, 50 : 287 - 317