Empirical Bayes estimation for the conditional extreme value model

被引:11
|
作者
Cheng, Linyin [1 ]
Gilleland, Eric [2 ]
Heaton, Matthew J. [3 ]
AghaKouchak, Amir [1 ]
机构
[1] Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA
[2] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80307 USA
[3] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA
来源
STAT | 2014年 / 3卷 / 01期
基金
美国国家科学基金会;
关键词
bivariate extremes; conditional extreme value model; empirical Bayes estimation;
D O I
10.1002/sta4.71
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new estimation strategy for estimating the parameters of the Heffernan and Tawn conditional extreme value model is proposed. The technique makes use of empirical Bayes estimation for the conditional likelihood that otherwise does not have a simple closed-form expression. The approach is tested on simulations from different types of extreme dependence (and independence) structures, as well as for two real data cases consisting of precipitation analysis conditional on extreme temperature in Boulder, Colorado, and Los Angeles, California, USA. The strategy generally has good coverage when informative priors are used for one of the parameters, except for the independence case where the coverage is low until the sample size reaches about 50. Results for the precipitation and temperature data are found to be consistent with the semi-non-parametric strategy. The presented model can be potentially applied in a wide variety of science fields, especially in earth, environment and climate sciences. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:391 / 406
页数:16
相关论文
共 50 条
  • [1] EMPIRICAL BAYES CONDITIONAL DENSITY ESTIMATION
    Scricciolo, Catia
    STATISTICA, 2015, 75 (01) : 37 - 55
  • [2] NONPARAMETRIC EMPIRICAL BAYES ESTIMATION OF EXTREME QUANTILES
    STEWART, TJ
    SOUTH AFRICAN STATISTICAL JOURNAL, 1986, 20 (02) : 194 - 195
  • [3] Estimation of the expected shortfall given an extreme component under conditional extreme value model
    Rafał Kulik
    Zhigang Tong
    Extremes, 2019, 22 : 29 - 70
  • [4] Estimation of the expected shortfall given an extreme component under conditional extreme value model
    Kulik, Rafal
    Tong, Zhigang
    EXTREMES, 2019, 22 (01) : 29 - 70
  • [5] Empirical bayes estimation in regression model
    Wang L.-C.
    Acta Mathematicae Applicatae Sinica, 2005, 21 (4) : 537 - 544
  • [6] BAYES ESTIMATION OF THE EXTREME-VALUE RELIABILITY FUNCTION
    LYE, LM
    HAPUARACHCHI, KP
    RYAN, S
    IEEE TRANSACTIONS ON RELIABILITY, 1993, 42 (04) : 641 - 644
  • [7] Detecting a conditional extreme value model
    Das, Bikramjit
    Resnick, Sidney I.
    EXTREMES, 2011, 14 (01) : 29 - 61
  • [8] Detecting a conditional extreme value model
    Bikramjit Das
    Sidney I. Resnick
    Extremes, 2011, 14 : 29 - 61
  • [9] Consistent Estimation of Conditional Cumulants in the Empirical Bayes Framework (Extended Abstract)
    Liu, Tang
    Dytso, Alex
    Poor, H. Vincent
    Shamai, Shlomo
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 1036 - 1037
  • [10] Extreme value estimation of the conditional risk premium in reinsurance
    Goegebeur, Yuri
    Guillou, Armelle
    Qin, Jing
    INSURANCE MATHEMATICS & ECONOMICS, 2021, 96 : 68 - 80