The major cytotoxic component of hemin was identified as metal free protoporphyrin IX in an epithelioid sarcoma cell line (VA-ES-BJ) and a glioblastoma cell line (U-373 MG) by exposing the cell lines to the iron chelator deferoxamine, tin-protoporphylin IX, and protoporphyrin IX. The contribution of lipid peroxidation and free radical generation to toxicity was examined ruing DL-buthionine-[S,R]-sulfoximine (BSO), and 21-aminosteroid (lazaroid, U74500A). Hemin caused significantly greater toxicity in VA-ES-BJ than in U-373 MG. While exogenous PpIX was more toxic than hemin in both cell lines, this toxicity was not due to iron depletion following intracellular heme formation since ferric citrate did not reverse PpIX toxicity. Pre-treatment with BSO enhanced hemin toxicity in the VA-ES-BJ cell line but not in U-373 MG, suggesting different modes of toxicity in the two cell lines. Exposure to lazaroid protected only VA-ES-BJ from protoporphyrin-induced toxicity implicating a specific sensitivity to lipid peroxidation and/or free radical generation by this cell line. These characteristics of the VA-ES-BJ cell line distinguish it fi om the glioblastoma and emphasize its utility for exploring cytotoxic effects of hemin and its precursors.