THE HARDY-LITTLEWOOD THEOREM ON FRACTIONAL-INTEGRATION FOR LAGUERRE SERIES

被引:7
|
作者
KANJIN, Y [1 ]
SATO, E [1 ]
机构
[1] YAMAGATA UNIV,FAC SCI,DEPT MATH,YAMAGATA 990,JAPAN
关键词
LAGUERRE POLYNOMIALS; FRACTIONAL INTEGRATION; MULTIPLIERS; TRANSPLANTATION;
D O I
10.2307/2160953
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hardy-Littlewood theorem on fractional integration for Fourier series says that if I(sigma)g similar to Sigma(n not equal 0) \n\(-sigma)($) over cap g(n)e(int), then I-sigma is bounded from L(p) to L(q), where 1 < p < q < infinity, 1/q = 1/p - sigma. We shall establish an analogue of this theorem for the Laguerre function system {(Gamma(n+alpha+1)/n!)(1/2) L(n)(alpha)(x)e(-x/2x alpha/2)}(infinity)(n=0).
引用
收藏
页码:2165 / 2171
页数:7
相关论文
共 50 条