MUTATING-P2 AND MUTATING-P1 RESIDUES AT CLEAVAGE JUNCTIONS IN THE HIV-1 POL POLYPROTEIN - EFFECTS ON HYDROLYSIS BY HIV-1 PROTEINASE

被引:16
|
作者
JUPP, RA
PHYLIP, LH
MILLS, JS
LEGRICE, SFJ
KAY, J
机构
[1] UNIV COLL CARDIFF,COLL CARDIFF,DEPT BIOCHEM,POB 903,CARDIFF CF1 1ST,WALES
[2] ROCHE PROD LTD,WELWYN GARDEN CIT AL7 3AY,HERTS,ENGLAND
[3] CASE WESTERN RESERVE UNIV,SCH MED,DIV INFECT DIS,CLEVELAND,OH 44106
关键词
HIV-1; PROTEINASE; SPECIFICITY; POLYPROTEIN PROCESSING; CLEAVAGE SITE MUTAGENESIS;
D O I
10.1016/0014-5793(91)80583-O
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations were introduced into the P2 and P1 positions of the junctions, (a) linking reverse transcriptase (RT) and integrase (IN) (-Leu*Phe-) and (b) between the p51 and RNase H domain (-Phe*Tyr-) within p66 of RT in the HIV-1 pol polyprotein. Processing by HIV proteinase (PR) in cis was monitored upon expression of these constructs in E. coli. Whereas the presence of Leu or Phe in P1 permitted rapid cleavage at either junction, substitution of a beta-branched (Ile) hydrophobic residue essentially abolished hydrolysis. By contrast, placement of a beta-branched (Val) residue in the P2 position flanking such -Hydrophobic*Hydrophobic- junctions resulted in effective cleavage of the scissile peptide bond. Gly in P2, however, abrogated cleavage. The significance of these findings in terms of PR specificity, polyprotein processing and the generation of homodimeric (p51/p51) RT for crystallisation purposes is discussed.
引用
收藏
页码:180 / 184
页数:5
相关论文
共 50 条
  • [1] Organization of HIV-1 pol is critical for Pol polyprotein processing
    Chang, YC
    Yu, SL
    Syu, WJ
    JOURNAL OF BIOMEDICAL SCIENCE, 1999, 6 (05) : 333 - 341
  • [2] Flexibility in the P2 domain of the HIV-1 Gag polyprotein
    Newman, JL
    Butcher, EW
    Patel, DT
    Mikhaylenko, Y
    Summers, MF
    PROTEIN SCIENCE, 2004, 13 (08) : 2101 - 2107
  • [3] CLEAVAGE OF HUMAN SERPINS BY HIV-1 PROTEINASE
    KISSELEV, AF
    MENTELE, R
    SCHULZE, A
    VONDERHELM, K
    JOURNAL OF CELLULAR BIOCHEMISTRY, 1994, : 168 - 168
  • [4] USE OF HIV-1 POL GENE PRECURSOR TO DETECT HIV-1 AND HIV-2
    REAGAN, KJ
    LILE, CC
    DEVASH, Y
    TURNER, J
    HU, YW
    KANG, CY
    LANCET, 1990, 335 (8683): : 236 - 236
  • [5] Characterization of HIV-1 Unmyrostolated Gag Polyprotein Interactions with the MAL HIV-1 Genome
    Arefeayne, Nahum
    Swanson, Canessa
    Getachew, Noel
    Lafaver, Brittany
    Gilchrist, Darin
    Chioma, Kennedy
    Summers, Michael
    FASEB JOURNAL, 2020, 34
  • [6] ENHANCEMENT OF HIV-1 PROTEINASE ACTIVITY BY HIV-1 REVERSE-TRANSCRIPTASE
    GOOBARLARSSON, L
    LUUKKONEN, BGM
    UNGE, T
    SCHWARTZ, S
    UTTER, G
    STRANDBERG, B
    OBERG, B
    VIROLOGY, 1995, 206 (01) : 387 - 394
  • [7] Modeling and Analysis of HIV-1 Pol Polyprotein as a Case Study for Predicting Large Polyprotein Structures
    Hao, Ming
    Imamichi, Tomozumi
    Chang, Weizhong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (03)
  • [8] HIV-1 RT enhances the activity of a tethered dimer of HIV-1 proteinase
    GoobarLarsson, L
    Larsson, PT
    Debouck, C
    Towler, EM
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 220 (01) : 203 - 207
  • [9] Dynamics of HIV-1 POL antibodies after ART in chronic HIV-1 infection
    Rinaldi, Francesca
    Rolla, Serena
    Galli, Laura
    Poli, Andrea
    Muccini, Camilla
    Mastrangelo, Andrea
    Tavano, Cinzia
    Lazzarin, Adriano
    Bartoloni, Alessandro
    Castagna, Antonella
    NEW MICROBIOLOGICA, 2020, 43 (02): : 55 - 57
  • [10] Mutating a conserved motif of the HIV-1 reverse transcriptase palm subdomain alters primer utilization
    Ghosh, M
    Williams, J
    Powell, MD
    Levin, JG
    LeGrice, SFJ
    BIOCHEMISTRY, 1997, 36 (19) : 5758 - 5768