VARIATIONAL PRINCIPLE FOR T-DEPENDENT CLASSICAL HAMILTONIAN SYSTEMS

被引:2
|
作者
BUCH, LH [1 ]
DENMAN, HH [1 ]
机构
[1] WAYNE STATE UNIV,DEPT PHYS,DETROIT,MI 48202
关键词
D O I
10.1016/0375-9601(76)90689-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:325 / 326
页数:2
相关论文
共 50 条
  • [1] VARIATIONAL METHOD FOR T-DEPENDENT CLASSICAL HAMILTONIAN SYSTEMS
    BUCH, LH
    DENMAN, HH
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (01): : 23 - 23
  • [2] AN EXTREMUM VARIATIONAL PRINCIPLE FOR CLASSICAL HAMILTONIAN-SYSTEMS
    DJUKIC, DS
    ATANACKOVIC, TM
    [J]. ACTA MECHANICA, 1984, 50 (3-4) : 163 - 175
  • [4] A variational principle for contact Hamiltonian systems
    Wang, Ya-Nan
    Yan, Jun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (07) : 4047 - 4088
  • [5] ERROR-BOUNDS VIA A NEW VARIATIONAL PRINCIPLE FOR CLASSICAL HAMILTONIAN-SYSTEMS
    DJUKIC, DS
    ATANACKOVIC, TM
    [J]. ACTA MECHANICA, 1984, 50 (3-4) : 177 - 191
  • [6] Variational principle for eigenvalue problems of Hamiltonian systems
    Benguria, RD
    Depassier, MC
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (14) : 2847 - 2850
  • [7] Implicit variational principle for contact Hamiltonian systems
    Wang, Kaizhi
    Wang, Lin
    Yan, Jun
    [J]. NONLINEARITY, 2017, 30 (02) : 492 - 515
  • [8] NEW VARIATIONAL PRINCIPLE OF HAMILTONIAN TYPE FOR CLASSICAL FIELD-THEORY
    DJUKIC, DJ
    VUJANOVI.B
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1971, 51 (08): : 611 - &
  • [9] Variational principle for contact Hamiltonian systems and its applications
    Wang, Kaizhi
    Wang, Lin
    Yan, Jun
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 123 : 167 - 200
  • [10] Variational principle in Hamiltonian mechanics
    L. V. Prokhorov
    A. S. Ushakov
    [J]. Doklady Mathematics, 2008, 78 : 925 - 928