The knowledge acquisition bottleneck in obtaining rules directly from an expert is well known. Hence, the problem of automated rule acquisition from data is a well-motivated one, particularly for domains where a database of sample data exists. In this paper we introduce a novel algorithm for the induction of rules from examples. The algorithm is novel in the sense that it not only learns rules for a given concept (classification), but it simultaneously learns rules relating multiple concepts. This type of learning, known as generalized rule induction is considerably more general than existing algorithms which tend to be classification oriented. Initially we focus on the problem of determining a quantitative, well-defined rule preference measure. In particular, we propose a quantity called the J-measure as an information theoretic alternative to existing approaches. The J-measure quantifies the information content of a rule or a hypothesis. We will outline the information theoretic origins of this measure and examine its plausibility as a hypothesis preference measure. We then define the ITRULE algorithm which uses the newly proposed measure to learn a set of optimal rules from a set of data samples, and we conclude the paper with an analysis of experimental results on real-world data.