WAVE-EQUATION VELOCITY ANALYSIS

被引:9
|
作者
GONZALEZSERRANO, A [1 ]
CLAERBOUT, JF [1 ]
机构
[1] STANFORD UNIV,DEPT GEOPHYS,STANFORD,CA 94305
关键词
SIGNAL FILTERING AND PREDICTION - SPECTRUM ANALYSIS;
D O I
10.1190/1.1441772
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Velocity-sensitive (wide propagation angle) seismic data do not comply with the rms small propagation angle approximation. A hyperbolic velocity spectrum and Dix's equation cannot use wide-angle arrivals to estimate interval velocity accurately. The linear moveout method measures interval velocity exactly in stratified media. Snell midpoint corrdinates are constructed to image the data before velocity estimation. Energy focuses at the arrival coordinates of a fixed reference Snell wavefront, as required by the linear moveout method. The image of a common-midpoint seismic gather in Snell midpoint coordinates, for a nonvertical reference Snell wave, defines the wave-equation velocity spectrum. Approximations of the wave equation in Snell midpoint coordinates satisfactorily image wide-angle energy. To compute the velocity spectrum the authors use the 15-degree finite-difference wave equation in the frequency continuation velocity. This formulation resolves multivalued, wide velocity spectrum data using inhomogeneous, offset and depth dependent, downward continuation velocity.
引用
收藏
页码:1432 / 1456
页数:25
相关论文
共 50 条
  • [1] Wave-equation migration velocity analysis for VTI models
    Li, Yunyue
    Biondi, Biondo
    Clapp, Robert
    Nichols, Dave
    GEOPHYSICS, 2014, 79 (03) : WA59 - WA68
  • [2] Linearized wave-equation migration velocity analysis by image warping
    Perrone, Francesco
    Sava, Paul
    Andreoletti, Clara
    Bienati, Nicola
    GEOPHYSICS, 2014, 79 (02) : S35 - S46
  • [3] Wave-equation migration velocity analysis by focusing diffractions and reflections
    Sava, PC
    Biondi, B
    Etgen, J
    GEOPHYSICS, 2005, 70 (03) : U19 - U27
  • [4] Numeric implementation of wave-equation migration velocity analysis operators
    Sava, Paul
    Vlad, Ioan
    GEOPHYSICS, 2008, 73 (05) : VE145 - VE159
  • [5] Time-lapse wave-equation migration velocity analysis
    Shragge, Jeffrey
    Lumley, David
    GEOPHYSICS, 2013, 78 (02) : S69 - S79
  • [6] Moveout-based wave-equation migration velocity analysis
    Zhang, Yang
    Biondi, Biondo
    GEOPHYSICS, 2013, 78 (02) : U31 - U39
  • [7] WAVE-EQUATION FOR A DISSIPATIVE FORCE QUADRATIC IN VELOCITY
    RAZAVY, M
    PHYSICAL REVIEW A, 1987, 36 (02): : 482 - 486
  • [8] Wave-equation migration velocity analysis with time-shift imaging
    Yang, Tongning
    Sava, Paul
    GEOPHYSICAL PROSPECTING, 2011, 59 (04) : 635 - 650
  • [9] Wave-equation migration velocity analysis. I. Theory
    Sava, P
    Biondi, B
    GEOPHYSICAL PROSPECTING, 2004, 52 (06) : 593 - 606
  • [10] Wave-equation migration velocity analysis by Double Square Root method
    Liu Qi-Lin
    Liu Yi-Ke
    Chang Xu
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2009, 52 (07): : 1891 - 1898