PCNN for automatic segmentation and information extraction from X-band SAR imagery

被引:14
|
作者
Del Frate, Fabio [1 ]
Latini, Daniele [1 ]
Pratola, Chiara [1 ]
Palazzo, Francesco [2 ]
机构
[1] Tor Vergata Univ, Dipartimento Informat Sistemi & Prod, Via Politecn, I-100133 Rome, Italy
[2] ESA ESRIN, SERCO Spa, Frascati, Italy
关键词
pulse-coupled neural networks; segmentation; building detection; oil spill detection; coastline extraction;
D O I
10.1080/19479832.2012.713398
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The extremely high number of synthetic aperture radar (SAR) images provided by the current spaceborne missions demand for the development of even more effective automatic techniques for data processing. In this context, neural approaches can give significant contributions being characterised by a high level of automatism. In particular, rather interesting potential is provided by the pulse-coupled neural networks (PCNNs), which have been designed with the idea of simulating the visual cortex of small mammals. In this article, the performance of PCNNs for automatic object extraction from satellite with very high-resolution SAR images is examined by applying them to different cases of interest.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 50 条
  • [1] Urban Area Extraction Using X-Band Fully Polarimetric SAR Imagery
    Susaki, Junichi
    Kishimoto, Masaaki
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) : 2592 - 2601
  • [2] ANALYSIS OF MARITIME X-BAND VELOCITY SAR IMAGERY
    Rosenberg, Luke
    Sletten, Mark
    [J]. 2015 IEEE RADAR CONFERENCE, 2015, : 121 - 126
  • [3] ANALYSIS OF SCATTERER MOTION EFFECTS IN MARSEN X-BAND SAR IMAGERY
    LYZENGA, DR
    SHUCHMAN, RA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1983, 88 (NC14) : 9769 - 9775
  • [4] Complex Scattering Mechanisms at Power Lines in X-Band SAR Imagery
    Ma, Sijie
    Li, Tao
    Motagh, Mahdi
    Auer, Stefan
    Liu, Yan
    Liu, Jie
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [5] URBAN AREA EXTRACTION USING AIRBORNE X-BAND FULLY POLARIMETRIC PI-SAR2 IMAGERY
    Susaki, J.
    Kishimoto, M.
    [J]. PIA15+HRIGI15 - JOINT ISPRS CONFERENCE, VOL. I, 2015, 40-3 (W2): : 219 - 226
  • [6] An Empirical Algorithm for Wave Retrieval from Co-Polarization X-Band SAR Imagery
    Shao, Weizeng
    Wang, Jing
    Li, Xiaofeng
    Sun, Jian
    [J]. REMOTE SENSING, 2017, 9 (07)
  • [7] APPLICABILITY OF MULTI-SEASONAL X-BAND SAR IMAGERY FOR MULTIRESOLUTION SEGMENTATION: A CASE STUDY IN A RIPARIAN MIXED FOREST
    Dabiri, Z.
    Hoelbling, D.
    Lang, S.
    Bartsch, A.
    [J]. INTERNATIONAL CONFERENCE ON SENSORS & MODELS IN REMOTE SENSING & PHOTOGRAMMETRY, 2015, 41 (W5): : 123 - 128
  • [8] Forest height estimation from X-band SAR
    Wallington, ED
    Woodhouse, I
    Woodhouse, LH
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2393 - 2396
  • [9] Automatic Extraction of Built-up from SAR Imagery
    Soni, Chetna
    Joseph, Manoj
    Jeyaseelan, A. T.
    Sharma, J. R.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2017, : 767 - 770
  • [10] The X-band SAR demonstrator development
    Zahn, R
    Braumann, H
    Schlott, M
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1935 - 1937