SEMICLASSICAL ANALYSIS OF QUANTUM SPECTRAL FUNCTIONS FOR A CHAOTIC BILLIARD

被引:13
|
作者
MEHLIG, B [1 ]
BOOSE, D [1 ]
MULLER, K [1 ]
机构
[1] CTR RECH NUCL,F-67037 STRASBOURG,FRANCE
关键词
D O I
10.1103/PhysRevLett.75.57
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a chaotic billiard, we calculate the quantum spectral functions associated with the position operator X^ and the momentum operator P^x. Semiclassical analysis shows that the quantum spectral function is determined to a large extent by classical ergodic autocorrelations inherent in the Weyl part. For the first time, we calculate periodic orbit corrections to the spectral function. © 1995 The American Physical Society.
引用
收藏
页码:57 / 60
页数:4
相关论文
共 50 条
  • [1] How chaotic is the stadium billiard? A semiclassical analysis
    Tanner, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08): : 2863 - 2888
  • [3] Semiclassical calculation of spectral correlation functions of chaotic systems
    Mueller, Sebastian
    Novaes, Marcel
    [J]. PHYSICAL REVIEW E, 2018, 98 (05)
  • [4] The quantum three-dimensional Sinai billiard - A semiclassical analysis
    Primack, H
    Smilansky, U
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 327 (1-2): : 1 - 107
  • [5] Sensitivity to perturbations in a quantum chaotic billiard
    Wisniacki, DA
    Vergini, EG
    Pastawski, HM
    Cucchietti, FM
    [J]. PHYSICAL REVIEW E, 2002, 65 (05):
  • [6] Sensitivity to perturbations in a quantum chaotic billiard
    Wisniacki, Diego A.
    Vergini, Eduardo G.
    Pastawski, Horacio M.
    Cucchietti, Fernando M.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05): : 1 - 055206
  • [7] Semiclassical aspects of (chaotic) quantum systems Part 2: Theory of spectral statistics
    Mueller, Sebastian
    [J]. MESOSCOPIC PHYSICS IN COMPLEX MEDIA, 2010,
  • [8] Chaotic dirac billiard in graphene quantum dots
    Ponomarenko, L. A.
    Schedin, F.
    Katsnelson, M. I.
    Yang, R.
    Hill, E. W.
    Novoselov, K. S.
    Geim, A. K.
    [J]. SCIENCE, 2008, 320 (5874) : 356 - 358
  • [9] Interaction effects in a chaotic graphene quantum billiard
    Hagymasi, Imre
    Vancso, Peter
    Palinkas, Andras
    Osvath, Zoltan
    [J]. PHYSICAL REVIEW B, 2017, 95 (07)
  • [10] Error of semiclassical eigenvalues in the semiclassical limit - an asymptotic analysis of the Sinai billiard
    Dahlqvist, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (42): : 7317 - 7344