Regular Matroids with Graphic Cocircuits

被引:2
|
作者
Papalamprou, Konstantinos [1 ]
Pitsoulis, Leonidas [2 ]
机构
[1] London Sch Econ, Dept Management, Operat Res Grp, London, England
[2] Aristotle Univ Thessaloniki, Dept Math & Phys Sci, Thessaloniki, Greece
关键词
D O I
10.4204/EPTCS.4.4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the notion of graphic cocircuits and show that a large class of regular matroids with graphic cocircuits belongs to the class of signed-graphic matroids. Moreover, we provide an algorithm which determines whether a cographic matroid with graphic cocircuits is signed-graphic or not.
引用
收藏
页码:29 / 41
页数:13
相关论文
共 50 条
  • [1] Circuits and Cocircuits in Regular Matroids
    Dillon Mayhew
    Graphs and Combinatorics, 2006, 22 : 383 - 389
  • [2] Circuits and cocircuits in regular matroids
    Mayhew, Dillon
    GRAPHS AND COMBINATORICS, 2006, 22 (03) : 383 - 389
  • [3] Signed-graphic matroids with all-graphic cocircuits
    Papalamprou, Konstantinos
    Pitsoulis, Leonidas S.
    DISCRETE MATHEMATICS, 2017, 340 (12) : 2889 - 2899
  • [4] Supereulerian regular matroids without small cocircuits
    Huo, Bofeng
    Du, Qingsong
    Li, Ping
    Wu, Yang
    Yin, Jun
    Lai, Hong-Jian
    JOURNAL OF GRAPH THEORY, 2023, 102 (01) : 107 - 127
  • [5] A characterization of graphic matroids using non-separating cocircuits
    Lemos, Manoel
    ADVANCES IN APPLIED MATHEMATICS, 2009, 42 (01) : 75 - 81
  • [6] Spanning cycles in regular matroids without small cocircuits
    Li, Ping
    Lai, Hong-Jian
    Shao, Yehong
    Zhan, Mingquan
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (08) : 1765 - 1776
  • [7] Small cocircuits in matroids
    Geelen, Jim
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (06) : 795 - 801
  • [8] SEPARATING COCIRCUITS IN BINARY MATROIDS
    CUNNINGHAM, WH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 43 (MAR) : 69 - 86
  • [9] Ramsey numbers for cocircuits in matroids
    Hurst, FB
    Reid, TJ
    ARS COMBINATORIA, 1997, 45 : 181 - 192
  • [10] NONSEPARATING COCIRCUITS IN BINARY MATROIDS
    Wagner, Donald K.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 3030 - 3049