A note on the connectedness of the efficient frontier

被引:0
|
作者
Cambini, R. [1 ]
Marchi, A. [1 ]
机构
[1] Univ Pisa, Fac Econ, Dept Stat & Appl Math, Via Cosimo Ridolfi,10, I-56124 Pisa, Italy
关键词
Multiobjective optimization; efficient frontier; quasiconcave sets;
D O I
10.1080/09720502.2005.10700386
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study sufficient conditions for the connectedness of the efficient frontier. We propose an unifying approach, based on a new regularity concept, which allows to generalize the results in [1, 6]. Connectedness results are studied for both V-compact and not V-compact sets. The obtained results are finally used to study the connectedness of the efficient frontier of continuous multiobjective functions.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [1] Quasiconcavity of sets and connectedness of the efficient frontier in ordered vector spaces
    Molho, E
    Zaffaroni, A
    [J]. GENERALIZED CONVEXITY, GENERALIZED MONOTONICITY: RECENT RESULTS, 1998, 27 : 407 - 424
  • [2] A note on β-connectedness
    Xinxing Wu
    Peiyong Zhu
    [J]. Acta Mathematica Hungarica, 2013, 139 : 252 - 254
  • [3] A NOTE ON CONNECTEDNESS
    REICHAW, M
    [J]. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1968, 44 (06): : 748 - &
  • [4] A note on connectedness
    Baran, M
    Kula, M
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (3-4): : 489 - 501
  • [5] A note on β-connectedness
    Wu, X.
    Zhu, P.
    [J]. ACTA MATHEMATICA HUNGARICA, 2013, 139 (03) : 252 - 254
  • [6] A NOTE ON GENERALIZED CONNECTEDNESS
    Shen, R-X.
    [J]. ACTA MATHEMATICA HUNGARICA, 2009, 122 (03) : 231 - 235
  • [7] A note on generalized connectedness
    R. -X. Shen
    [J]. Acta Mathematica Hungarica, 2009, 122 : 231 - 235
  • [8] A NOTE ON CONNECTEDNESS IM KLEINEN
    DAVIS, HS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (05) : 1237 - &
  • [9] The Efficient Frontier: A Note on the Curious Difference between Variance and Standard Deviation
    Roll, Richard
    [J]. JOURNAL OF PORTFOLIO MANAGEMENT, 2021, 48 (01): : 93 - 97
  • [10] A note on local connectedness in bitopological spaces
    Mrsevic, M
    Reilly, IL
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (07): : 715 - 721