DUAL-AIRCRAFT INVESTIGATION OF THE INNER-CORE OF HURRICANE NORBERT .3. WATER-BUDGET

被引:0
|
作者
GAMACHE, JF [1 ]
HOUZE, RA [1 ]
MARKS, FD [1 ]
机构
[1] UNIV WASHINGTON,DEPT ATMOSPHER SCI,SEATTLE,WA 98195
关键词
D O I
10.1175/1520-0469(1993)050<3221:DAIOTI>2.0.CO;2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The hydrometeor water budget of Hurricane Norbert on 24 September 1984 is computed using two microphysical retrieval techniques. Three-dimensional distributions of condensation, evaporation, precipitation, and advection of cloud and precipitation are computed, and a bulk water budget is computed as the volume integral of these distributions. The role of the microphysical retrievals is to provide the three-dimensional distribution of cloud water content, since it cannot be determined with the equipment available. Both retrieval methods use the steady-state continuity equation for water. The first method determines precipitation formation mechanisms from the radar-reflectivity and Doppler wind fields. The cloud water content is determined, through microphysical modeling, to be the amount necessary to explain the rate of precipitation formation. The second method (that of Hauser et al.) solves the water continuity equations as a boundary value problem, while also employing microphysical modeling. This method is applied in three dimensions for the first time. Asymmetries in the water budget of Hurricane Norbert were important, apparently accounting for nearly half the net condensation. The most condensation and heaviest precipitation was to the left of the storm track, while the strongest evaporation was to the rear of the storm. Many of the downdrafts were unsaturated because they were downwind of the precipitation maximum where little water was available for evaporation. Since the evaporation in the downdrafts was significantly less than the condensation in their counterpart updrafts, net condensation (bulk condensation-bulk evaporation) was significantly greater than would be implied by the net upward mass flux. Much of the vapor required to account for the greater bulk condensation appears to have come from enhanced sea surface evaporation under the dry downdraft air to the right of the storm track. The net outflow of condensate from the storm inner core was quite small, although there were appreciable outward and inward horizontal fluxes at certain locations. A maximum of ice outflow to the left of the storm track in the front of the storm corresponded well to the ice particle trajectories that Houze et al. suggested were feeding the stratiform precipitation found farther outward from the storm center.
引用
收藏
页码:3221 / 3243
页数:23
相关论文
共 2 条